An accelerator for the logistic regression algorithm based on sampling on-demand  

在线阅读下载全文

作  者:Jiye LIANG Yunsheng SONG Deyu LI Zhiqiang WANG Chuangyin DANG 

机构地区:[1]Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministryof Education,School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China [2]College of Information Science and Engineering,Shandong Agricultural University,Tai'an 271018,China [3]Department of Systems Engineering and Engineering Management,City University of Hong Kong,Hong Kong 999077,China

出  处:《Science China(Information Sciences)》2020年第6期222-224,共3页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.61876103,61432011);Project of Key Research and Development Plan of Shanxi Province(Grant No.201603D111014);1331 Engineering Project of Shanxi Province。

摘  要:Dear editor,Training a logistic regression classifier is equivalent to solving a convex optimization problem,which is frequently solved with gradient descent(GD).As the gradient is computed using all the data,using GD is very time-consuming when the dataset is large[1,2].To accelerate the GD algorithm,stochastic gradient descent(SGD)estimates the gradient using only one training data point.

关 键 词:SOD logistic regression LOGISTIC 

分 类 号:O224[理学—运筹学与控制论] TP181[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象