检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiye LIANG Yunsheng SONG Deyu LI Zhiqiang WANG Chuangyin DANG
机构地区:[1]Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministryof Education,School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China [2]College of Information Science and Engineering,Shandong Agricultural University,Tai'an 271018,China [3]Department of Systems Engineering and Engineering Management,City University of Hong Kong,Hong Kong 999077,China
出 处:《Science China(Information Sciences)》2020年第6期222-224,共3页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.61876103,61432011);Project of Key Research and Development Plan of Shanxi Province(Grant No.201603D111014);1331 Engineering Project of Shanxi Province。
摘 要:Dear editor,Training a logistic regression classifier is equivalent to solving a convex optimization problem,which is frequently solved with gradient descent(GD).As the gradient is computed using all the data,using GD is very time-consuming when the dataset is large[1,2].To accelerate the GD algorithm,stochastic gradient descent(SGD)estimates the gradient using only one training data point.
关 键 词:SOD logistic regression LOGISTIC
分 类 号:O224[理学—运筹学与控制论] TP181[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15