Reducibility for Schrodinger Operator with Finite Smooth and Time-Quasi-periodic Potential  

在线阅读下载全文

作  者:Jing LI 

机构地区:[1]School of Mathematics,Shandong University,Ji5nan 250100,China [2]School of Mathematics and Statistics,Shandong University,Weihai 264209,Shandong,China

出  处:《Chinese Annals of Mathematics,Series B》2020年第3期419-440,共22页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.11601277,11771253)。

摘  要:In this paper, the author establishes a reduction theorem for linear Schr?dinger equation with finite smooth and time-quasi-periodic potential subject to Dirichlet boundary condition by means of KAM(Kolmogorov-Arnold-Moser) technique. Moreover, it is proved that the corresponding Schr?dinger operator possesses the property of pure point spectra and zero Lyapunov exponent.

关 键 词:REDUCIBILITY Quasi-periodic Schrodinger operator KAM theory Finite smooth potential Lyapunov exponent Pure-Point spectrum 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象