检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王春光 朱寿增[1,2] 刘玉坤 庞邦辉 惠杨磊 WANG Chunguang;ZHU Shouzeng;LIU Yukun;PANG Banghui;HUI Yanglei(School of Civil and Architectural Engineering,Guilin University of Technology,Guilin 541004;Guangxi Key Laboratory of Rock Mechanics and Engineering,Guilin 541004)
机构地区:[1]桂林理工大学土木与建筑工程学院,广西桂林541004 [2]广西岩土力学与工程重点实验室,广西桂林541004
出 处:《土工基础》2020年第2期152-158,共7页Soil Engineering and Foundation
摘 要:采用双参数法分别分析了不同悬臂长度、跨距条件下弯矩极值随柔度特征值λ的变化规律。计算结果表明,基础梁的弯矩值并非由地基基床系数或梁的抗弯刚度单独决定,而是由柔度特征值λ决定;悬臂段长度与跨距的比值决定了梁端的弯曲方向,间接影响了梁的整体弯矩值;当柔度特征值λ较小,悬臂段长度与跨距的比值在0.32~0.35范围内时,随着λ减小,基础梁的弯矩变化幅度不大,即受λ影响较小,此时框架梁受力更加合理。The Two-Parameter Method was used for the analysis of maximum bending moments in relation with the flexibility eigenvalue lambda under various cantilever arm and span lengths. The results show that the bending moment of foundation beam is not determined by the coefficient of foundation subgrade or the bending stiffness of the beam, but by the eigenvalue of flexibility. The ratio of the cantilever arm length to the span length determines the bending direction at the end of the beam and indirectly affects the overall bending moment of the beam. When the eigenvalue of flexibility is small and the ratio of cantilever length to span is in the range of 0.32~0.35, with the decrease of lambda, the change of bending moment of the foundation beam is small, in other words, the influence of lambda is small, so the stress in the frame beam is more reasonable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62