检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁京章[1] 黄星舒 吴丽娟 熊小萍[1] LIANG Jingzhang;HUANG Xingshu;WU Lijuan;XIONG Xiaoping(School of Electrical Engineering, Guangxi University, Nanning 530004, Guangxi, China;Information and Network Center, Guangxi University, Nanning 530004, Guangxi, China)
机构地区:[1]广西大学电气工程学院,广西南宁530004 [2]广西大学信息网络中心,广西南宁530004
出 处:《华南理工大学学报(自然科学版)》2020年第6期143-150,共8页Journal of South China University of Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(51867004);赛尔网络下一代互联网技术创新项目(NGII20171101)。
摘 要:为了提高电力负荷曲线聚类精度,文中提出了一种基于核主成分分析(KPCA)和改进K-means算法的电力负荷曲线聚类方法。该方法首先在划分聚类算法K-means基础上融入密度聚类思想,提出了融合密度思想的K-means算法(DK-means算法),并在电力负荷曲线实验集上对比分析其聚类效果;接着在实验集上比较各种降维算法的降维聚类精度和降维速度;最后分析KPCA+DK-means组合算法的降维聚类能力。结果表明,戴维森堡丁指数(DBI)更适合作为电力负荷曲线聚类评价指标;以DBI为评价指标,与K-means、BIRCH、DBSCAN和EnsClust 4种聚类算法相比,DK-means的聚类精度更高;与LLE、MDS、ISOMAP 3种非线性降维算法相比,KPCA的降维速度更快;KPCA+DK-means组合算法有良好的降维聚类能力,较DK-means在聚类精度和聚类效率上均有提升。KPCA+DK-means组合算法可以实现电力负荷曲线的高效降维、精确聚类,对用电行为模式的准确提取起关键技术支持作用。A clustering method of power load profiles based on kernel principal component analysis(KPCA)and improved K-means algorithm was proposed to improve clustering accuracy of power load profiles.Firstly,a K-means algorithm based on density idea,namely,density K-means(DK-means)was proposed by combining the density clustering method with partitioning clustering algorithm K-means.And the clustering effect was comparatively analyzed on the experimental set of power load profiles.Then the dimensionality reduction accuracy and speed of various dimensionality reduction algorithms were compared on the experimental set.Finally,the dimensionality reduction and clustering ability of the KPCA+DK-means combination algorithm was analyzed.The results show that,firstly,Davies-Bouldin Index(DBI)is more suitable for the evaluation index of power load profiles clustering;se-condly,taking DBI as the evaluation index,the clustering accuracy of DK-means is higher than that of K-means,BIRCH,DBSCAN and EnsClust algorithms;thirdly,compared with LLE,MDS and ISOMAP,the dimensionality reduction speed of KPCA is faster;finally,the KPCA+DK-means combination algorithm has good dimensionality reduction and clustering ability,and its clustering accuracy and clustering efficiency are better than those of DK-means.In short,the KPCA+DK-means combination algorithm can achieve efficient dimensionality reduction and accurate clustering of power load profiles,thus plays a key technical role in accurately extracting information of electricity consumption behavior.
关 键 词:电力负荷曲线 DK-means算法 核主成分分析 降维 聚类
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.14