基于星凸形随机超曲面模型多扩展目标多伯努利滤波器  被引量:19

A Multiple Extended Target Multi-Bernouli Filter Based on Star-convex Random Hypersurface Model

在线阅读下载全文

作  者:陈辉[1] 杜金瑞 韩崇昭[2] CHEN Hui;DU Jin-Rui;HAN Chong-Zhao(School of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050;Institute of Integrated Automation,School of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049)

机构地区:[1]兰州理工大学电气工程与信息工程学院,兰州730050 [2]西安交通大学电子与信息工程学院综合自动化研究所,西安710049

出  处:《自动化学报》2020年第5期909-922,共14页Acta Automatica Sinica

基  金:国家自然科学基金(61873116,51668039);甘肃省科技计划项目(18YF1GA065,18JR3RA137);国防基础科研项目(JCKY2018427C002)资助。

摘  要:针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题,提出了一种基于星凸形随机超曲面模型(Starconvex RHM)的多扩展目标多伯努利滤波算法.首先,在有限集统计(Finite set statistics,FISST)理论框架下,采用多伯努利随机有限集(MBer-RFS)和泊松RFS(Possion-RFS)分别描述多扩展目标的状态和观测,并给出扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器.其次,利用RHM去描述任意星凸形扩展目标的量测源分布,提出了容积卡尔曼高斯混合星凸形多扩展目标多伯努利滤波器.此外,本文给出了一种多扩展目标不规则形状估计性能的评价指标.最后,通过多扩展目标和具有形状突变的多群目标的跟踪仿真实验验证了本文方法的有效性.Considering the tracking of multi-extended target with irregular shape in complicated and uncertain environment,this paper proposes a multi-extended target multi-Bernoulli filtering algorithm based on star-convex random hypersurface model(RHM).First,in the framework of finite set statistics(FISST),the multi-Bernoulli random finite set(MBer-RFS)and Poisson-RFS are used to model multi-extended target state and measurement respectively,and then the extended target cardinality balanced multi-target multi-Bernoulli(ET-CBMeMBer)filter is given.Subsequently,using RHM to represent the measurement source distribution of any star-convex extended target,this paper proposes the cubature Kalman Gaussian mixture Star-convex multi-extended target multi-Bernoulli filter.Besides,this paper also gives a performance metric which can evaluate the irregular shape estimation of multi-extended target.Finally,the effectiveness of the proposed method is verified by the tracking simulations of multi-extended target and multi-group target with sudden shape change.

关 键 词:多扩展目标跟踪 随机超曲面模型 多伯努利滤波器 容积卡尔曼 

分 类 号:TN713[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象