检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱仝 郑松林[1] 袁卫平[2] ZHU Tong;ZHENG Songlin;YUAN Weiping(School of Mechanical Engineering,Shanghai University of Science and Technology,Shanghai 200093,China;SAIC Motor Commercial Vehicle Technique Center,Shanghai 200438,China)
机构地区:[1]上海理工大学机械工程学院,上海200093 [2]上海汽车集团股份有限公司商用车技术中心,上海200438
出 处:《噪声与振动控制》2020年第3期170-174,193,共6页Noise and Vibration Control
摘 要:为了稳定、精确地评价车内稳态噪声声品质,以车内稳态噪声为研究对象,进行主观评价试验,计算客观心理声学参数并完成了相关性分析。建立基于支持向量回归(Support Vector Regression,SVR)的车内稳态噪声声品质预测模型,并使用遗传算法(Genetic Algorithm,GA)对支持向量回归的超参数进行优化。其后建立基于反向传播神经网络(Back Propagation Artificial Neural Network,BPANN)的声品质预测模型。对比分析发现遗传-支持向量回归(GASVR)模型预测精度高于BP神经网络。结果表明,遗传-支持向量回归适用于车内稳态噪声声品质预测,能够较大提高车内稳态噪声声品质预测精度和工程效率。In order to accurately evaluate the sound quality of internal noise of vehicles,subjective test and psychoacoustic metrics calculation were carried out for the correlation analysis between subjective and objective evaluations.On this basis,a sound Quality evaluation model based on Support Vector Regression(SVR),which parameters were optimized by Genetic Algorithm(GA),was built.Then,another sound quality prediction model based on Back Propagation Artificial Neural Network(BPANN)was established.Through the comparative analysis,the GA-SVR model was found to have better performance than the BPANN model.The result shows that the GA-SVR is suitable for establishing the sound quality evaluation model for steady internal noise prediction of vehicles with high accuracy and efficiency.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31