基于改进一对一算法的网络流量分类  被引量:2

Internet traffic classification based on the improved one-versus-one method

在线阅读下载全文

作  者:赵择 徐佑宇 唐亮[1,2] 卜智勇 ZHAO Ze;XU Youyu;TANG Liang;BU Zhiyong(Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院上海微系统与信息技术研究所,上海200050 [2]中国科学院大学,北京100049

出  处:《中国科学院大学学报(中英文)》2020年第4期570-576,共7页Journal of University of Chinese Academy of Sciences

摘  要:准确的流量分类是网络管理和网络安全的有效保障。近年来基于机器学习的网络流量分类备受关注,特征选择对于机器学习的分类效果有重要影响。但使整体分类性能达到最优的特征选择子集,并不一定使特定类别的分类性能达到最佳,这降低了分类性能可达到的上限,对此提出基于改进的一对一算法的流量分类模型。首先采用一对一的思想将流量多分类任务拆解为多个相互独立的二分类子任务,分别对任意两类流量进行特征选择和流量分类。所有子任务的分类结果采用Stacking策略结合。实验表明,多种机器学习算法与特征选择算法应用于该模型的准确度较经典模型均有提升。Accurate traffic classification is an effective guarantee for network management and security.Machine learning-based internet traffic classification became particularly notable in recent years,and feature selection had an important impact on the performance of machine learning.However,the feature selection subset that optimizes the overall classification performance is not the subset that optimizes the classification performance of a particular class,which reduces the upper limit of classification performance.Therefore,a new traffic classification model based on the improved one-versus-one method is proposed.In the new traffic classification model,traffic multi-classification task is split into multiple independent sub-tasks.Then feature selection and traffic classification are performed on any two classes of traffic,and the Stacking strategy is used to combine the results of all sub-tasks.The experiments show that the applications of several machine learning and feature selection algorithms to this model improve accuracies compared with those to the classical model.

关 键 词:一对一 流量分类 Stacking策略 机器学习 特征选择 

分 类 号:TP393.0[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象