基于人工智能与BIM技术的工程数据信息分析预警方法研究  被引量:7

Design of teaching quality evaluation and early warning system based on artificial intelligence and data analysis

在线阅读下载全文

作  者:何静[1] 刘红霞[1] 李金荣[2] HE Jing;LIU Hong-xia;LI Jin-rong(Shaanxi Institute of Technology,Xi’an 710300,China;Zhengzhou University,Zhengzhou 450001,China)

机构地区:[1]陕西国防工业职业技术学院,陕西西安710300 [2]郑州大学,河南郑州450001

出  处:《电子设计工程》2020年第13期36-40,共5页Electronic Design Engineering

基  金:陕西国防工业职业技术学院科研项目(Gfy19-23)。

摘  要:针对传统建筑工程中,管线综合跨专业沟通成本高、效率低下的现状,文中基于BIM技术对管线综合设计流程进行改进。通过使用BIM技术,整合给排水、暖通、电气等不同专业间的管线方案,替代原有的人工管线碰撞校对,实现管线设计中的自动化碰撞预警。文中还对管线工程施工方案的评判方法进行了研究,通过引入人工智能技术中的模糊判决方法,制定评价指标、规划指标权重,实现施工方案数据的智能分析。仿真结果表明,文中所设计的数据分析和管线碰撞预警方法可以提升75%的工作效率,给排水、暖通、电气工程可以分别节约16.1%、12.5%和14.2%的管线成本。In view of the current situation of high cost and low efficiency of cross discipline communication in traditional construction engineering,this paper improves the comprehensive design process of pipeline based on BIM Technology.Through the use of BIM Technology,the integration of HVAC,water supply and drainage,electrical and other professional pipeline schemes,instead of the original manual pipeline collision proofreading,the automatic collision early warning in pipeline design is realized.In addition,the evaluation method of construction scheme of pipeline engineering is also studied.By introducing the fuzzy decision method of artificial intelligence technology,the evaluation index and planning index weight are formulated,and the intelligent analysis of construction scheme data is realized.The simulation results show that the data analysis and pipeline collision early warning method designed in this paper can improve the working efficiency by 75%,the water supply and drainage engineering can save 16.1%of the pipeline cost,the HVAC specialty is 12.5%,and the electrical engineering is 14.2%.

关 键 词:人工智能 管线工程 BIM 模糊判决 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象