偏振成像的乳腺癌病理切片检测方法  被引量:3

Detection of Pathological Sections of Breast Cancer Based on Polarization Imaging

在线阅读下载全文

作  者:田博文 黄丹飞[1] 钟艾琦 王雄才 孙雪峰 张玉爽 赵丽颖 王震 宋东[2] TIAN Bo-wen;HUANG Dan-fei;ZHONG Ai-qi;WANG Xiong-cai;SUN Xue-feng;ZHANG Yu-shuang;ZHAO Li-ying;WANG Zhen;SONG Dong(Photoelectric Engineering College, Changchun University of Science and Technology, Changchun 130022, China;Bethune First Hospital, Jilin University, Changchun 130022, China)

机构地区:[1]长春理工大学光电工程学院,长春130022 [2]吉林大学白求恩第一医院,长春130022

出  处:《科学技术与工程》2020年第16期6369-6374,共6页Science Technology and Engineering

基  金:国家“973”计划(613225)。

摘  要:生物组织具有与其结构和功能相关的固有光学特性,偏振成像技术能够根据组织正常和恶性变化之间的微观结构差异,表现出不同的偏振特性,从而实现两者区分。设计了一套采集组织背向散射光Mueller矩阵的自动成像系统,对两种常见的乳腺癌病理组织切片分别进行Mueller矩阵成像实验,并对所得到的Mueller矩阵图像数据采用Mueller矩阵分解方法,分别提取出样本Mueller矩阵中具有清晰物理意义的参数图像。实验结果表明,相应的Mueller矩阵分解参数图像可以区分癌变组织和非癌变组织。这为乳腺癌的快速病理诊断提供了一种新的思路。Biological tissue has its inherent optical properties related to its structure and function.Polarization imaging technology can show different polarization characteristics according to the microstructure difference between normal and malignant changes of tissues,so as to distinguish one from another.Firstly,a set of automatic imaging system was designed to collect the Mueller matrix of tissue backscatter light.The Mueller matrix imaging experiments were carried out on two kinds of common breast cancer pathological tissue sections.Then,the Mueller matrix image data obtained by Mueller matrix decomposition method were used to extract the clear physical meaning parameter images in the Mueller matrix.The experimental results show that the corresponding Mueller matrix decomposition parameter image can distinguish cancerous tissue from non-cancerous tissue.It provides a new way for the rapid pathological diagnosis of breast cancer.

关 键 词:生物组织光学 偏振成像 乳腺癌 MUELLER矩阵 Mueller矩阵分解 病理诊断 

分 类 号:Q632[生物学—生物物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象