利用ERA-Interim数据构建海区大气加权平均温度模型  被引量:5

Building atmospheric weighted average temperature model for sea area using ERA-Interim data

在线阅读下载全文

作  者:王郁茗 邵利民[1] 张尚悦[1] WANG Yuming;SHAO Limin;ZHANG Shangyue(Dalian Naval Academy,Liaoning Dalian 116018,China)

机构地区:[1]海军大连舰艇学院,辽宁大连116018

出  处:《气象科学》2020年第3期408-413,共6页Journal of the Meteorological Sciences

基  金:军内科研项目(DJYKY2014-105)。

摘  要:针对海洋区域尤其远海缺乏探空资料,且常用的Bevis经验模型在海区存在模型系统误差的问题,研究基于ERA-Interim再分析资料构建海洋区域E-T_m回归模型。利用不同时间的ERA-Interim数据及近海探空资料,对E-T_m回归模型的拟合效果及预报能力进行检验,并与常规T_m获取方法进行比较,结果表明,E-T_m回归模型拟合效果较好,相比Bevis经验模型,其预报稳定性及精度更高;在典型海区与基于探空资料建立的本地化模型进行了预报精度的比较,结果表明,2. 5°×2. 5°分辨率的E-T_m模型与探空资料建立的本地化模型精度相当,可以在无法建立探空站的海域进行使用,仅存在1%的平均转换误差。Due to the lack of sounding data for the ocean area,especially the high sea,and the errors of the Bevis empirical model that is commonly used for the sea area,the marine area E-T m regression model was built for the sea area based on ERA-Interim reanalysis data.Using the ERA-Interim data and offshore sounding data at different times,the fitting effect and forecasting ability of the E-T m regression model were tested and compared with the conventional T m acquisition method.The results show that the E-T m regression model fits well and demonstrates higher prediction stability and accuracy compared with the Bevis empirical model.The E-T m regression model was also compared with the localization model built based on sounding data in the typical sea area in terms of the prediction accuracy.The result shows that the E-T m regression model with a resolution of 2.5°×2.5°has the equivalent accuracy to the localization model built based on the sounding data,with only 1%of average conversion error.Thus,the E-T m regression model can be used in the sea area where the sounding station cannot be constructed.

关 键 词:ERA-INTERIM 海洋区域 大气加权平均温度 探空资料 E-Tm 

分 类 号:P423[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象