A VIEWPOINT TO MEASURE OF NON-COMPACTNESS OF OPERATORS IN BANACH SPACES  被引量:1

在线阅读下载全文

作  者:Qinrui SHEN 沈钦锐(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China)

机构地区:[1]School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China

出  处:《Acta Mathematica Scientia》2020年第3期603-613,共11页数学物理学报(B辑英文版)

基  金:The project supported in part by the National Natural Science Foundation of China(11801255)。

摘  要:This article is committed to deal with measure of non-compactness of operators in Banach spaces.Firstly,the collection C(X)(consisting of all nonempty closed bounded convex sets of a Banach space X endowed with the uaual set addition and scaler multiplication)is a normed semigroup,and the mapping J from C(X)onto F(Ω)is a fully order-preserving positively linear surjective isometry,whereΩis the closed unit ball of X^*and F(Ω)the collection of all continuous and w^*-lower semicontinuous sublinear functions on X^*but restricted toΩ.Furthermore,both EC=JC-JC and EK=JK-JK are Banach lattices and EK is a lattice ideal of EC.The quotient space EC/EK is an abstract M space,hence,order isometric to a sublattice of C(K)for some compact Haudorspace K,and(FQJ)C which is a closed cone is contained in the positive cone of C(K),where Q:EC→EC/EK is the quotient mapping and F:EC/EK→C(K)is a corresponding order isometry.Finally,the representation of the measure of non-compactness of operators is given:Let BX be the closed unit ball of a Banach space X,thenμ(T)=μ(T(BX))=||(F QJ)T(BX)||C(K),∀T∈B(X).

关 键 词:Measure of non-compactness measure of non-compactness of operators Banach lattice Banach space 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象