检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qinrui SHEN 沈钦锐(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China)
机构地区:[1]School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China
出 处:《Acta Mathematica Scientia》2020年第3期603-613,共11页数学物理学报(B辑英文版)
基 金:The project supported in part by the National Natural Science Foundation of China(11801255)。
摘 要:This article is committed to deal with measure of non-compactness of operators in Banach spaces.Firstly,the collection C(X)(consisting of all nonempty closed bounded convex sets of a Banach space X endowed with the uaual set addition and scaler multiplication)is a normed semigroup,and the mapping J from C(X)onto F(Ω)is a fully order-preserving positively linear surjective isometry,whereΩis the closed unit ball of X^*and F(Ω)the collection of all continuous and w^*-lower semicontinuous sublinear functions on X^*but restricted toΩ.Furthermore,both EC=JC-JC and EK=JK-JK are Banach lattices and EK is a lattice ideal of EC.The quotient space EC/EK is an abstract M space,hence,order isometric to a sublattice of C(K)for some compact Haudorspace K,and(FQJ)C which is a closed cone is contained in the positive cone of C(K),where Q:EC→EC/EK is the quotient mapping and F:EC/EK→C(K)is a corresponding order isometry.Finally,the representation of the measure of non-compactness of operators is given:Let BX be the closed unit ball of a Banach space X,thenμ(T)=μ(T(BX))=||(F QJ)T(BX)||C(K),∀T∈B(X).
关 键 词:Measure of non-compactness measure of non-compactness of operators Banach lattice Banach space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145