检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Han SHEN-TU Yingjiao RONG Dongliang PENG Mengfan XUE Yunfei GUO
机构地区:[1]Institution of Information and Control,Hangzhou Dianzi University,Hangzhou 310018,China [2]Science and Technology on Near-Surface Detection Laboratory,Wuxi 214035,China
出 处:《Chinese Journal of Aeronautics》2020年第6期1731-1746,共16页中国航空学报(英文版)
基 金:funded by the National Natural Science Foundation of China(Nos.61703128,61871166,61701148,61703131);the Science and Technology on Near-Surface Detection Laboratory Foundation,China(No.6142414180208);the Zhejiang Provincial Natural Science Foundation of China(No.LZ20F010002)。
摘 要:Model Set Adaptation(MSA)plays a key role in the Variable Structure Multi-Model tracking approach(VSMM).In this paper,the Error-Ambiguity Decomposition(EAD)principle is adopted to derive the EAD-MSA criterion that is optimal in the sense of minimizing the square error between the estimate and the truth.Consequently,the EAD Variable Structure first-order General Pseudo Bayesian(EAD-VSGPB1)algorithm and the EAD Variable Structure Interacting Multiple Model(EAD-VSIMM)algorithm are constructed.The proposed algorithms are tested in two groups of maneuvering target tracking scenarios under different modes and observation error conditions.The simulation results demonstrate the effectiveness of the EAD-VSMM approach and show that,compared to some existing multi-model algorithms,the proposed EAD-VSMM algorithms achieve more robust and accurate tracking results.
关 键 词:Error-ambiguity decomposition Maneuvering target tracking Model sequence set adaptation Multi-model estimation Variable structure
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151