HIGH ORDER FINITE DIFFERENCE/SPECTRAL METHODS TO A WATER WAVE MODEL WITH NONLOCAL VISCOSITY  

在线阅读下载全文

作  者:Mohammad Tanzil Hasan Chuanju Xu 

机构地区:[1]School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientific Computing,Xiamen University,Xiamen 361005,China

出  处:《Journal of Computational Mathematics》2020年第4期580-605,共26页计算数学(英文)

基  金:The research of this author is partially supported by NSF of China(51661135011 and 91630204).

摘  要:In this paper,efficient numerical scheme is proposed for solving the water wave model with nonlocal viscous term that describe the propagation of surface water wave.By using the Caputo fractional derivative definition to approximate the nonlocal fractional operator,finite difference method in time and spectral method in space are constructed for the considered model.The proposed method employs known 5/2 order scheme for fractional derivative and a mixed linearization for the nonlinear term.The analysis shows that the proposed numerical scheme is unconditionally stable and error estimates are provided to predict that the second order backward differentiation plus 5/2 order scheme converges with order 2 in time,and spectral accuracy in space.Several numerical results are provided to verify the efficiency and accuracy of our theoretical claims.Finally,the decay rate of solutions are investigated.

关 键 词:Water waves Nonlocal viscosity Finite difference Spectral method Conver-gence order Decay rate 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象