检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖文[1] 李解 潘锋[1] 赵爽[2] XIAO Wen;LI Jie;PAN Feng;ZHAO Shuang(School of Instrumentation and Optoelectronics Engineering,Beihang University,Beijing 100191,China;261206 Troops,Chinese People′s Liberation Army,Beijing 100042,China)
机构地区:[1]北京航空航天大学仪器科学与光电工程学院,北京100191 [2]中国人民解放军61206部队,北京100042
出 处:《光子学报》2020年第6期173-184,共12页Acta Photonica Sinica
基 金:国家自然科学基金(No.61775010);北京市自然科学基金(No.7192104)。
摘 要:在UNet框架中集成SENet权重标定学习机制,设计了USENet实现图像超分辨重构.网络以对称拓扑叠加残差运算,通过多尺度卷积窗口增强模型精度与泛化能力,为图像特征通道引入权重标定算法以提升兴趣区域的估算置信度.结果表明,该模型能够明显改善输入样本的细节特征,已将验证集与真实图像的结构相似性从平均0.770 2提升至0.942 7.根据实验组和不带标定层的对照组重建图像对比显示,标定层可进一步在全局图像中将兴趣区域从平均0.965 5提升至0.970 3.This research integrates learning mechanisms of weights calibration and multiple receptive fields in SENet into UNet,working out USENet to achieve super-resolution in digital holographic phase cell images.Structured with symmetrical topology and filtered with multi-scale,the model is trained to improve the image rebuilding accuracy and the capability of generalization.So as to enhance the estimation confidence in the region of interest,the weights calibration blocks are introduced to differentiate the importance of feature map channels.With better visual effects and details,the experimental results confirm that the average numerical score of structural similarity index on validation set has been verified to improve from 0.7702 to 0.9427.According to the performances between experimental group of USENet and reference group of network without calibration layer,the region of interests in global images have demonstrated a further improvement from 0.9655 to 0.9703 by the block of calibration.
关 键 词:数字全息显微 超分辨 深度学习 神经网络 生物细胞
分 类 号:TN26[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46