Deep learning for position fixing in the micron scale by using convolutional neural networks  被引量:1

在线阅读下载全文

作  者:Hongye Li Hu Liang Qihao Hu Meng Wang Zefeng Wang 李宏业;梁鹄;胡琪浩;王蒙;王泽锋(College of Advanced In ter discipl in ary Studies,National University of Defense Technology,Changsha 410073,China;State Key Laboratory of Pulsed Power Laser Technology,Changsha 410073,China;Hunan Provincial Key Laboratory of High Energy Laser Technology,Changsha 410073,China;Tianjin Navigation Instruments Research Institute,Tianjin 300131,China)

机构地区:[1]College of Advanced In ter discipl in ary Studies,National University of Defense Technology,Changsha 410073,China [2]State Key Laboratory of Pulsed Power Laser Technology,Changsha 410073,China [3]Hunan Provincial Key Laboratory of High Energy Laser Technology,Changsha 410073,China [4]Tianjin Navigation Instruments Research Institute,Tianjin 300131,China

出  处:《Chinese Optics Letters》2020年第5期6-10,共5页中国光学快报(英文版)

基  金:the Out standing Youth Science Fund of Hunan Provincial Natural Science Foundation(No.2019JJ20023);the National Natural Science Foundation of China(NSFC)(No.11974427).

摘  要:We propose here a novel method for position fixing in the micron scale by combining the convolutional neural network(CNN) architecture and speckle patterns generated in a multimode fiber. By varying the splice offset between a single mode fiber and a multimode fiber, speckles with different patterns can be generated at the output of the multimode fiber. The CNN is utilized to learn these specklegrams and then predict the offset coordinate. Simulation results show that predicted positions with the precision of 2 μm account for 98.55%.This work provides a potential high-precision two-dimensional positioning method.

关 键 词:fiber optics fiber optics sensors fiber optics imaging 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象