检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭翔纬[1] TAN Xiangwei(Department of Software Engineering,South China Institute of Software Engineering.Gu,Guangzhou 510990,China)
机构地区:[1]广州大学华软软件学院软件工程系,广州510990
出 处:《吉林大学学报(理学版)》2020年第4期899-905,共7页Journal of Jilin University:Science Edition
基 金:广东省“创新强校工程”青年特色创新项目(批准号:2016KQNCX236);广州大学华软学院“质量工程”项目(批准号:JYJG201908).
摘 要:针对当前图像检索算法存在精度低、实时性差等不足,为了获得更理想的图像检索结果,提出一种基于支持向量机和用户反馈机制的图像检索算法.首先采集大量图像,提取图像检索的相关特征,建立图像检索特征库;然后采用支持向量机计算待检索图像特征与图像检索库特征之间的相似度,确定图像类别,实现图像的初步检索;最后引入用户反馈机制对图像的初步检测结果进行精细比对,并与经典图像检索算法进行对比实验.实验结果表明,该方法的图像检索精度超过90%,图像检索误差远小于经典图像检索算法,提高了图像检索效率.Aiming at the shortcomings of the current image retrieval algorithm,such as low accuracy,poor real-time performance,in order to obtain more ideal image retrieval results,the author proposed an image retrieval algorithm based on support vector machine and user feedback mechanism.Firstly,the author collected large images,extracted the relevant features of image retrieval,and established image retrieval feature library.Secondly,the author used support vector machine to calculate the similarity between the features of the image to be retrieved and the features of image retrieval library,determined the image category,and realized the preliminary image retrieval.Finally,the author introduced the user feedback mechanism to refine the preliminary image detection results,and compared with the classical image retrieval algorithm.The experimental results show that the image retrieval accuracy of the proposed method is more than 90%,the image retrieval error is much smaller than that of the classical image retrieval algorithm,and improves the image retrieval efficiency.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3