基于堆叠式双向LSTM的心电图自动识别算法  被引量:13

Automatic Recognition of ECG Based on Stacked Bidirectional LSTM

在线阅读下载全文

作  者:王文刀 王润泽 魏鑫磊 漆云亮 马义德[1] WANG Wen-dao;WANG Run-ze;WEI Xin-lei;QI Yun-liang;MA Yi-de(School of Information Science and Engineering,Lanzhou University,Lanzhou 730000,China)

机构地区:[1]兰州大学信息科学与工程学院,兰州730000

出  处:《计算机科学》2020年第7期118-124,共7页Computer Science

基  金:国家自然科学基金(61175012,60872109,60572011);甘肃省自然科学基金(18JR3RA288);中央高校基本科研业务费专项资金(lzujbky-2017-it72)。

摘  要:针对日趋增长的心电图数据分析需求,提出了一种新的心电图分类算法。首先对原始数据进行截断固定长度、样本均衡、求取信号的瞬时频率和光谱熵等预处理操作,数据经过预处理后模型能够更好地从其中提取特征进行学习;在训练过程中采用两个双向LSTM(BILSIM)网络堆叠组成的模型,堆叠式的双向LSTM(BILSIM)模型是一种改进的循环神经网络模型,相较于卷积神经网络,循环神经网络更加适合用来处理像心电图这样的序列数据。该模型在Windows下的MATLAB2018b上进行训练和测试,CUDA版本为9.0,采用分类准确率作为衡量模型性能的指标在两个数据集上进行了测试,一个是2017年生理信号挑战赛的数据(下文简称2017数据集),该模型在此数据集上最终分类准确率为97.4%;另一个是2018年生理信号挑战赛的数据(下文简称2018数据集),最终的分类准确率为77.6%,并在所属的MATLAB组获得了第三名的成绩。该算法与传统LSTM网络的结果相比,在2017数据集上提升了5.6%的准确率,在2018数据集上提升了7.6%的准确率;与单层的双向LSTM网络的结果相比,在2017数据集上提升了4.2%的准确率,在2018数据集上提升了5.7%的准确率,这充分验证了该算法的可行性和优势。For the growing demand of ECG data analysis,a new ECG classification algorithm is proposed.Firstly,the original data are truncated by fixed length,sample equilibrium is obtained,and the pre-processing operations such as instantaneous frequency and spectral entropy of the signal are obtained.After the data is preprocessed,the model can better extract features from the data for learning.In training progress,a two-way LSTM network stacking model is adopted.The stacked two-way LSTM model is an improved cyclic neural network model.Compared with convolutional neural networks,the cyclic neural network is more sui-table for processing sequence data such as electrocardiogram.The experiment is conducted using MATLAB2018b under Windows for training and testing.The CUDA version is 9.0.The classification accuracy rate is used as an indicator to measure the performance of the model.The model is tested on two data sets,one is the data of the 2017 Physiological Signal Challenge(hereinafter referred to as the 2017 dataset),the final classification accuracy rate is 97.4%;the other is the data of the 2018 Physiological Signal Challenge(hereinafter referred to as the 2018 dataset),and the final classification accuracy rate is 77.6%on this dataset.The MATLAB group to which it belongs has achieved the third place.This algorithm improves the accuracy of 5.6%in the 2017 dataset and 7.6%in the 2018 dataset compared to the results of the traditional LSTM network.Compared to the results of a single-layer bidirectional LSTM network,in the 2017 data set,the accuracy rate improves 4.2%,and the accuracy rate improves 5.7%in the 2018 data set,which fully verifies the feasibility and advantages of the algorithm.

关 键 词:堆叠式双向LSTM网络 心律失常 心电图分类 深度学习 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象