检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张永利 刘楠楠 王兆伟 ZHANG Yong-li;LIU Nan-nan;WANG Zhao-wei(China Academy of Electronics and Information Technology,CETC,Beijing 100041,China)
机构地区:[1]中国电子科技集团公司电子科学研究院,北京100041
出 处:《舰船电子对抗》2020年第3期7-12,共6页Shipboard Electronic Countermeasure
摘 要:态势估计是对动态变化的对象感知并对提取的态势要素进行觉察、理解和预测的处理过程。以目标运动状态特征为依据,基于自组织竞争神经网络,对传感器量测数据进行无监督的自组织聚类,将各个量测数据准确划分到各个类别当中,解决目标分群的问题。对于具有明显的时变性和不确定性的空中目标的运动特征,Elman神经网络可反映系统随时间变化的动态特性及存储信息的能力,预测任意逼近非线性函数,通过学习历史数据建模,对目标的运动特征进行网络训练,预测目标运动状态,为实现多目标环境下的航迹接续提供方法借鉴。Situation assessment is the process to sense the dynamic changing objects,and makes the perceivation,apprehension and prediction to the extracted situation factors.According to the features of object motion state,unsupervised self-organizing clustering is carried on to sensors’measurement data based on self-organizing competitive neural network.Measurement data can be divided into various categories to solve the problem of target grouping.To the motion features of air targets with obvious time-varying and uncertainty,the Elman neural network can reflect the dynamic property that the system changes with time and the information storage capability,predict random approaching non-linear functions,model by learning history data,perform the network training to object motion features,predict object motion states,which can provide the reference for the track continuation under the multiple targets environment.
关 键 词:自组织竞争神经网络 目标分群 ELMAN神经网络 目标运动状态预测 态势估计
分 类 号:TN971.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.164.190