基于云计算技术的网络数据采集传输仿真  被引量:8

Network Data Acquisition and Transmission Simulation Based on Cloud Computing Technology

在线阅读下载全文

作  者:李辉[1] LI Hui(College of Computer Science and Communication Engineering,Guangxi University of Science and Technology,Liuzhou Guangxi 545006,China)

机构地区:[1]广西科技大学计算机科学与通信工程学院,广西柳州545006

出  处:《计算机仿真》2020年第6期152-155,456,共5页Computer Simulation

基  金:国家自然科学基金(11864005);广西自然科学基金项目(2018GXNSFAA294085)。

摘  要:针对网络数据采集传输过程中冗余数据过多、运算复杂度较大,导致数据采集准确度低、数据传输能耗高、效率低的问题,提出基于云计算技术的网络数据采集传输方法。以云计算技术为背景,传感器节点、sink节点、服务种类和数据上传形式为基础架构网络模型,通过sink节点接收到所有节点的坐标信息选出最优的少量采集点坐标,再采用量子遗传算法获得最短环路,当sink节点依轨迹进行运动抵达采集点时,发送采集信息,节点接收到信息后将执行数据的传输操作,通过无线网关软件的分析转换为以太网数据格式,实现向监测中心传输数据。仿真结果表明,所提方法的采集准确率较高,数据传输耗能较低,网络数据采集传输的效率高。Massive redundant data and large computational complexity in the process of network data collection and transmission lead to low data collection accuracy and high data transmission energy consumption. Therefore, a network data collection and transmission method based on cloud computing technology was put forward. Taking the cloud computing technology as the background, we used the sensor nodes, sink nodes, service types and data upload forms as the basis of constructing network model. Then, we used sink nodes to receive the coordinate information of all nodes and select the optimal coordinates of a small number of collection points. Moreover, we used quantum genetic algorithm to get the shortest loop. When sink node moved along the trajectory to the collection point, it sent the collection information. After receiving the information, the node performed the data transmission. Through the analysis of wireless gateway software, we converted the data to Ethernet data format and thus to complete the transmission of data to the monitoring center. Simulation results show that the proposed method has higher acquisition accuracy, lower energy consumption for data transmission and higher efficiency of network data acquisition and transmission.

关 键 词:云计算技术 数据采集传输 传感器 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象