检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王玉涛 刘小平 曹晓毅[1] WANG Yutao;LIU Xiaoping;CAO Xiaoyi(Xi’an Research Institute, China Coal Technology and Engineering Group Corp., Xi’an, Shaanxi 710077, China;School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an, Shaanxi 710048, China)
机构地区:[1]中煤科工集团西安研究院有限公司,陕西西安710077 [2]西安理工大学土木与建筑工程学院,陕西西安710048
出 处:《水文地质工程地质》2020年第4期141-148,共8页Hydrogeology & Engineering Geology
基 金:中煤科工集团西安研究院有限公司科技创新基金项目资助(2016XAYMS31)。
摘 要:Q2黄土由于埋藏深,结构相对致密,其湿陷性问题常常被忽视。湿陷系数作为评价黄土湿陷程度的定量指标,其影响因素众多,包括土的含水率、干密度、孔隙比等。由于各因素之间存在一定相关性,所建立的湿陷系数与物理指标之间相关关系往往准确度较低。为降低黄土湿陷指标多重相关性对数据回归分析结果的影响,提高预测精度,以彬州渭化乙二醇项目场地Q2黄土为研究对象,在统计分析场地地层物性指标及湿陷系数与物性单一指标之间相关性的基础上,筛选了7个与湿陷系数相关性较好的指标。采用主成分分析法,通过多元线性回归分析,建立了以累积方差贡献率为基础的Q2黄土湿陷系数计算模型。模型计算值与实测值对比结果表明,该方法有效较低了湿陷系数影响因子之间的多重相关性和相互影响问题,证实了所建立的Q2黄土湿陷系数与独立影响因子之间相关关系的合理性和准确性。Due to deep burial and the relatively dense structure of Q2 loess,its collapsibility is often overlooked.As a quantitative index to evaluate the degree of loess collapsibility,collapsibility coefficient is influenced by many factors,including soil moisture content,dry density,void ratio and other physical properties.Because there is a certain correlation among the factors,the correlation between the established collapsibility coefficient and the physical index is often of low accuracy.In order to effectively reduce the influence of multiple correlation of loess collapsible index on the data regression analysis results and to improve the prediction accuracy,the Q2 loess of the Weihua glycol project site in Binzhouis taken as the research object.Based on the statistical analysis of the correlation between the physical property index of the site stratum and the single index of collapsible coefficient and physical property,seven indexes with better correlation with collapsible coefficient are selected.By using principal component analysis and multiple linear regression analysis,the calculation model of Q2 loess collapsibility coefficient based on cumulative variance contribution rate is established.The comparison between the calculated value of the model and the measured value shows that the method is effective in reducing the multiple correlation and mutual influence between the influence factors of the collapsibility coefficient,and confirms the rationality and accuracy of the correlation between the established Q2 loess collapsibility coefficient and the independent influence factors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.107.97