检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:骆华 LUO Hua(School of Economics and Management,Fuzhou University,Fuzhou 350108,China)
机构地区:[1]福州大学经济与管理学院,福建福州350108
出 处:《武汉理工大学学报(信息与管理工程版)》2020年第3期239-245,共7页Journal of Wuhan University of Technology:Information & Management Engineering
基 金:国家自然科学基金项目(61773123)。
摘 要:针对属性权重完全未知的概率犹豫模糊多属性决策中决策信息的不完全性、外部环境的不确定性及决策者自身风险偏好的问题,提出基于改进距离的概率犹豫模糊多属性决策方法。首先,采用犹豫度公式测量概率犹豫模糊元中元素个数差异所带来的犹豫性,用信息不完全度公式测量概率犹豫模糊元中隶属度概率之和与1的差异所带来的信息不完全性,并结合元素数值之间的差异,定义了改进距离公式。其次,为了考虑决策者自身的风险偏好,采用离差最大化方法确定属性权重,并将改进距离公式与TODIM方法相结合,构建概率犹豫模糊多属性决策模型。最后,通过算例分析验证了所提出方法的有效性与合理性。This paper studies the probabilistic hesitant fuzzy multi-attribute decision problem with completely unknown attribute weights.Aiming at the problems of incompleteness of decision information,uncertainty of external environment,and decision makers′own risk appetite,a probabilistic hesitant fuzzy multi-attribute decision-making method based on an improved distance is proposed.First,the hesitancy formula is proposed to measure the hesitancy caused by the number difference in the probabilistic hesitant fuzzy elements.An information incompleteness formula is proposed to measure the information incompleteness caused by the difference between the sum of membership probability and 1 in the probabilistic hesitant fuzzy elements.An improved distance formula are defined by combining with hesitation,incomplete information and differences between element values.Then,in order to consider the risk preference of decision makers,the attribute weight is determined by the maximum deviation method,and the improved distance formula is combined with the TODIM method to construct a probabilistic fuzzy multi-attribute decision model.Finally,the validity and rationality of the proposed method are verified by an example analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3