检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘信良 王静秋[1] LIU Xin-Liang;WANG Jing-Qiu(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China)
出 处:《计算机系统应用》2020年第6期175-180,共6页Computer Systems & Applications
摘 要:本文提出一种基于全卷积神经网络的图像中文字目标语义分割算法和一种新的数据集制作与增广方法.该算法首先采用改进全卷积神经网络对图像中的文字目标进行初步分割,然后利用大津法进行二值化处理,划分出目标的大致区域,最后用全连接条件随机场算法进行修正,得到最终结果.该算法在测试集上准确率为85.7%,速度为0.181秒/幅,为图像目标区域的进一步分析做准备.This study proposes an algorithm for semantic segmentation of targets in images based on fully convolutional neural networks and a new method to make and augment dataset.The algorithm primarily segments the targets from images using improved fully convolutional neural networks,OTSU method is applied to binarize images and segment the general areas of targets,finally,the fully connected conditional random field algorithm is used to correct the general areas of targets and get the final results.This algorithm achieves the accuracy of 85.7%and speed of 0.181 second per image on test set,and prepares for further analysis of targets in images.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145