检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:翁虎 何勇[1] 梁健 WENG Hu;HE Yong;LIANG Jian(College of Computer Science and Technology,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学计算机科学与技术学院,贵阳550025
出 处:《计算机系统应用》2020年第6期230-234,共5页Computer Systems & Applications
基 金:贵州大学青年教师科研基金(贵大自青基合字201304)。
摘 要:本文从智能家居角度研究室内热舒适,分析热舒适评价方式PMV,指出其部分参数在智能家居场景中获取困难.提出在忽略风速和平均辐射温度的情况下,引入气候和环境特征来拟合PMV公式.研究使用经过差分进化算法(Differential Evolution,DE)优化后的BP神经网络算法(DE-BP)来建立拟合模型,DE算法优化神经网络的参数,神经网络训练使用动量加速的随机梯度下降算法,且增加了仿射变换的标准化层和L2正则化.测试结果显示模型在收敛速度、稳定性和泛化性能上比传统BP神经网络更优,在较小误差范围内可应用于计算热舒适度的系统中,降低其输入参量难度.The study researches indoor thermal comfort from the perspective of smart home,analyzes the thermal comfort evaluation method of PMV,and points out that some of its parameters are difficult to obtain in the smart home scene.The study proposes to introduce the climatic and environmental characteristics to fit the PMV formula while ignoring wind speed and average radiant temperature.The research uses BP neural network algorithm optimized by Differential Evolution(DE-BP)to establish a fitting model,DE algorithm optimizes parameters of neural network,neural network training uses momentum-accelerated stochastic gradient descent algorithm,and adds the normalization layer and L2 regularization of the affine transformation.The test results show that the model is better than the traditional BP neural network in terms of convergence speed,stability,and generalization performance,and can be used within a small error range.It is applied to the system for calculating thermal comfort and reduces the difficulty of input parameters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.56.30