检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘秀娟[1] 杜卫锋[2] LIU Xiu-juan;DU Wei-feng(School of Logistics and Information Engineering,Huzhou Vocational&Technical College,Huzhou313000,China;School of Mathematics,Physics and Information Engineering,Jiaxing University,Jiaxing 314001,China)
机构地区:[1]湖州职业技术学院物流与信息工程学院,浙江湖州313000 [2]嘉兴学院数理与信息工程学院,浙江嘉兴314001
出 处:《模糊系统与数学》2020年第3期118-126,共9页Fuzzy Systems and Mathematics
基 金:国家自然科学基金青年基金项目(61703183);浙江省公益技术应用研究计划项目(LGG19F030010)。
摘 要:猫群优化算法(Cat Swarm Optimization,CSO)是建立在猫的行为模式和群体智能基础上的一种新型群体智能优化算法。为提高猫群优化算法的性能,把模拟退火算法应用于猫群优化算法,提出模拟退火猫群优化算法(Simulated Annealing Cat Swarm Optimization,SACSO),通过变异算子调整所要优化的种群。其基本过程为先行产生随机初始种群,接着进行搜索,并设置初始温度,继而应用模拟退火算法获取全局最优替代值,再依据位置和速度公式更新新解,然后在个体较优位置再运用变异运算,进行进一步地搜索。然后分别将猫群优化算法、模拟退火粒子群算法(Simulated Annealing Particle Swarm Optimization,SAPSO)、模拟退火猫群优化算法在11个典型的基准测试函数下进行仿真对比,结果表明模拟退火猫群优化算法不仅增加了全局收敛性,而且在收敛速度和精度方面均优于其它两种算法。Cat swarm optimization(CSO)is a new swarm intelligence optimization algorithm based on cat’s behavior pattern and swarm intelligence.In order to improve the performance of the cat swarm optimization algorithm,the simulated annealing cat swarm optimization(SACSO)algorithm is proposed by applying the simulated annealing algorithm to the cat swarm optimization algorithm,the mutation operator is used to adjust the population to be optimized.The basic process is to generate a random initial population first,then search,and set the initial temperature,then use the simulated annealing algorithm to obtain the global optimal alternative value,then update the new solution according to the location and speed formula,and then use the mutation operation in the individual better location to further search.Then the cat swarm optimization algorithm,simulated annealing particle swarm optimization(SAPSO)algorithm and simulated annealing cat swarm optimization algorithm are simulated and compared under 11 typical benchmark functions.The results show that the simulated annealing cat swarm optimization algorithm not only increases the global convergence,but also has better convergence speed and accuracy than the other two algorithms.
关 键 词:模拟退火猫群优化算法 猫群优化算法 模拟退火 群体智能 仿生计算
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28