检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗伶俐 王远军[1] LUO Lingli;WANG Yuanjun(Institute of Medical Imaging Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]上海理工大学医学影像工程研究所,上海200093
出 处:《中国医学物理学杂志》2020年第7期873-877,共5页Chinese Journal of Medical Physics
基 金:国家自然科学基金(61201067);上海市自然科学基金(18ZR1426900)。
摘 要:磁共振(MR)成像是当前应用于临床医学诊断的重要医学成像手段之一。如何缩短扫描时间进行快速成像一直以来都是MR成像领域中的热门研究问题。近年来,随着深度学习的兴起和快速发展,深度学习被广泛应用于医学图像处理领域中。目前基于深度学习的MR成像方法作为MR成像的新兴方向,相应的研究已取得了一系列进展。本文对几种常见的基于深度学习的MR成像方法进行归纳和简要分析,并对其研究前景进行了展望。Magnetic resonance(MR)imaging is one of the most important medical imaging methods currently used in clinical medical diagnosis.How to shorten the scanning time for accelerated MR imaging has always been a hot research issue in the field of MR imaging.In recent years,with the rise and rapid development of deep learning,deep learning has been widely used in medical image processing.At present,deep learning-based MR imaging has emerged as an emerging direction of MR imaging,and lots of progress has been made in the related researches.Herein several common deep learning-based MR imaging are summarized and analyzed briefly,and their research prospects are discussed.
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249