5G低密度奇偶校验码的低复杂度偏移最小和算法  被引量:1

Low complexity offset min-sum algorithm for 5G low density parity check codes

在线阅读下载全文

作  者:陈发堂[1] 张友寿 杜铮 CHEN Fatang;ZHANG Youshou;DU Zheng(College of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065

出  处:《计算机应用》2020年第7期2028-2032,共5页journal of Computer Applications

基  金:国家科技重大专项(2017ZX03001021-004)。

摘  要:为了提高低密度奇偶校验(LDPC)码偏移最小和(OMS)算法的误码性能,基于5G NR标准提出了一种5G LDPC码的低复杂度OMS算法。针对传统算法中偏移因子值计算不够准确问题,使用密度进化获取更加精准的偏移因子值,用于校验节点更新,以增强OMS算法的性能;并使用线性近似方法对获得的偏移因子值进行近似处理,在保证译码性能的情况下降低了算法的复杂度。针对变量节点振荡现象对译码的影响,将节点更新前后的对数似然比(LLR)消息值加权处理,削减变量节点的振荡性,提高了译码器收敛速度。仿真结果表明,与归一化最小和(NMS)算法和OMS算法相比,在误比特率(BER)为10-5时所提算法译码性能可以获得0.3~0.5 dB的增益,平均迭代次数分别降低了48.1%和24.3%,同时与对数似然比-置信传播(LLR-BP)算法也只相差近0.1 dB。In order to improve the error code performance of Low Density Parity Check(LDPC)code Offset Min-Sum(OMS)algorithm,a low complexity OMS algorithm for 5 G LDPC codes was proposed based on 5 G NR standard.Aiming at the problem that the offset factor value calculation in the traditional algorithm is not accurate enough,the density evolution was used to obtain a more accurate offset factor value,which was used to the check node updating in order to enhance the performance of OMS algorithm.And the obtained offset factor value was approximated by using the linear approximation method,so as to reduce the complexity of the algorithm while ensuring decoding performance.For the influence of the variable node oscillation phenomenon on the decoding,the Log-Likelihood Ratio(LLR)message values before and after node updating were weighted,so the oscillation of the variable node was reduced,and the convergence speed of the decoder was improved.The simulation results show that compared with Normalized-Min-Sum(NMS)algorithm and OMS algorithm,the proposed algorithm improves the decoding performance by 0.3-0.5 dB when the Bit-Error Rate(BER)is 10-5,and the average iteration times reduced by 48.1%and 24.3%respectively.At the same time,the difference between the performance of the proposed algorithm and LLR-BP(Log-Likelihood Ratio-Belief Propagation)algorithm performance is only nearly 0.1 dB.

关 键 词:5G 低密度奇偶校验码 偏移最小和 密度进化 振荡性 线性近似 

分 类 号:TN911.22[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象