Tighter constraints of multiqubit entanglement in terms of Renyi-α entropy  

在线阅读下载全文

作  者:Meng-Li Guo Bo Li Zhi-Xi Wang Shao-Ming Fei 郭梦丽;李波;王志玺;费少明(Department of Mathematics,East China University of Technology,Nanchang 330013,China;School of Mathematics and Computer Science,Shangrao Normal University,Shangrao 334001,China;School of Mathematical Sciences,Capital Normal University,Beijing 100048,China;Max-Planck-Institute for Mathematics in the Sciences,04103,Leipzig,Germany)

机构地区:[1]Department of Mathematics,East China University of Technology,Nanchang 330013,China [2]School of Mathematics and Computer Science,Shangrao Normal University,Shangrao 334001,China [3]School of Mathematical Sciences,Capital Normal University,Beijing 100048,China [4]Max-Planck-Institute for Mathematics in the Sciences,04103,Leipzig,Germany

出  处:《Chinese Physics B》2020年第7期251-256,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11765016 and 11675113);the Natural Science Foundation of Beijing,China(Grant No.KZ201810028042);Beijing Natural Science Foundation,China(Grant No.Z190005).

摘  要:Quantum entanglement plays essential roles in quantum information processing.The monogamy and polygamy relations characterize the entanglement distributions in the multipartite systems.We present a class of monogamy inequalities related to theµ-th power of the entanglement measure based on Renyi-αentropy,as well as polygamy relations in terms of theµ-th power of Renyi-αentanglement of assistance.These monogamy and polygamy relations are shown to be tighter than the existing ones.

关 键 词:monogamy relations polygamy relations Renyi-αentropy Hamming weight 

分 类 号:O413.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象