Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization  

在线阅读下载全文

作  者:DAI Yutong WENG Yang 

机构地区:[1]College of Mathematics,Sichuan University,Chengdu 610064,China

出  处:《Journal of Systems Science & Complexity》2020年第2期345-365,共21页系统科学与复杂性学报(英文版)

基  金:supported by the National Key R&D Program of China under Grant No.2018YFC0830300。

摘  要:This paper proposes a synchronous parallel block coordinate descent algorithm for minimizing a composite function,which consists of a smooth convex function plus a non-smooth but separable convex function.Due to the generalization of the proposed method,some existing synchronous parallel algorithms can be considered as special cases.To tackle high dimensional problems,the authors further develop a randomized variant,which randomly update some blocks of coordinates at each round of computation.Both proposed parallel algorithms are proven to have sub-linear convergence rate under rather mild assumptions.The numerical experiments on solving the large scale regularized logistic regression with 1 norm penalty show that the implementation is quite efficient.The authors conclude with explanation on the observed experimental results and discussion on the potential improvements.

关 键 词:Block coordinate descent convergence rate convex functions parallel algorithms 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象