检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guanying Wu Xuan Guo Baohua Xu
机构地区:[1]the Dental Center of China-Japan Friendship Hospital,Beijing 100029,China [2]the Department of Computer Science and Engineering,University of North Texas,Denton,TX 76203,USA
出 处:《Tsinghua Science and Technology》2020年第5期678-689,共12页清华大学学报(自然科学版(英文版)
摘 要:Many human diseases involve multiple genes in complex interactions.Large Genome-Wide Association Studies (GWASs) have been considered to hold promise for unraveling such interactions.However,statistic tests for high-order epistatic interactions (≥2 Single Nucleotide Polymorphisms (SNPs)) raise enormous computational and analytical challenges.It is well known that the block-wise structure exists in the human genome due to Linkage Disequilibrium (LD) between adjacent SNPs.In this paper,we propose a novel Bayesian method,named BAM,for simultaneously partitioning SNPs into LD-blocks and detecting genome-wide multi-locus epistatic interactions that are associated with multiple diseases.Experimental results on the simulated datasets demonstrate that BAM is powerful and efficient.We also applied BAM on two GWAS datasets from WTCCC,i.e.,Rheumatoid Arthritis and Type 1 Diabetes,and accurately recovered the LD-block structure.Therefore,we believe that BAM is suitable and efficient for the full-scale analysis of multi-disease-related interactions in GWASs.Many human diseases involve multiple genes in complex interactions.Large Genome-Wide Association Studies (GWASs) have been considered to hold promise for unraveling such interactions.However,statistic tests for high-order epistatic interactions (≥2 Single Nucleotide Polymorphisms (SNPs)) raise enormous computational and analytical challenges.It is well known that the block-wise structure exists in the human genome due to Linkage Disequilibrium (LD) between adjacent SNPs.In this paper,we propose a novel Bayesian method,named BAM,for simultaneously partitioning SNPs into LD-blocks and detecting genome-wide multi-locus epistatic interactions that are associated with multiple diseases.Experimental results on the simulated datasets demonstrate that BAM is powerful and efficient.We also applied BAM on two GWAS datasets from WTCCC,i.e.,Rheumatoid Arthritis and Type 1 Diabetes,and accurately recovered the LD-block structure.Therefore,we believe that BAM is suitable and efficient for the full-scale analysis of multi-disease-related interactions in GWASs.
关 键 词:disease association study EPISTASIS Linkage Disequilibrium(LD)block Bayesian methods
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.156.98