检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李长青[1] 林建辉[1] 胡永旭[1] LI Changqing;LIN Jianhui;HU Yongxu(State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu,Sichuan 610031,China)
机构地区:[1]西南交通大学牵引动力国家重点试验室,四川成都610031
出 处:《机车电传动》2020年第3期142-147,共6页Electric Drive for Locomotives
摘 要:针对强噪声情况下列车齿轮箱滚动轴承早期故障特征提取困难的问题,提出基于最小熵解卷积(minimum entropy deconvolution,MED)与参数优化变分模态分解(variational mode decomposition,VMD)相结合的故障诊断方法。首先利用MED对轴承振动信号进行降噪;其次,采用离散差分进化算法(discrete differential evolution algorithm,DDE)对VMD的参数进行优化搜索,并利用优化参数的变分模态分解算法对降噪后的故障信号进行处理,得到一系列本征模态函数;最后,选择最佳的本征模态函数进行包络分析,从而提取出故障特征。试验结果表明,该方法能有效提取列车齿轮箱滚动轴承故障特征,可用于轴承故障诊断。Aiming at the problem of feature extraction of train gearbox rolling bearing’s incipient fault in the case of strong noise,a method of fault diagnosis based on minimum entropy deconvolution(MED) and parameter optimized variational mode decomposition(VMD) was proposed.Firstly,the bearing vibration signal was denoised by using MED.Then,the VMD parameters were optimized by discrete differential evolution algorithm(DDE),and the denoising signal was processed by VMD using the optimum parameters obtained by searching,a series of intrinsic mode functions were obtained.Finally,the optimal intrinsic mode function(IMF)was selected for envelopment analysis and getting the fault frequency.The experimental results showed that the proposed method could effectively extract the fault features of train gearbox rolling bearing and could be used to rolling bearing faulf diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.110.162