检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Jianfang FU Zhiyuan NIU Mingxin ZHANG Pengbo ZHANG Qiuling
机构地区:[1]College of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454003,China
出 处:《Chinese Journal of Electronics》2020年第4期615-622,共8页电子学报(英文版)
摘 要:Personalized recommendation systems predict potential demand by analyzing user preferences.Generally,user feedback information is inferred from implicit feedback or explicit feedback.Nevertheless,feedback can be contaminated by user’s mis-operations or malicious operations,and may thus lead to incorrect results.We propose a novel Multi-feedback pairwise ranking method via Adversarial training(AT-MPR)for recommender to enhance the robustness and overall performance in the event of rating pollution.The MPR method extends Bayesian personalized ranking(BPR)to cover three types of feedback:positive,negative,and unobserved.It obtains user preferences in a probabilistic way through multiple feedbacks at different levels.To reduce the impact of feedback noise,we train an MPR objective function using minimax adversarial training.Experiments on two datasets show that the AT-MPR model achieves satisfactory performance and outperforms the state-of-the-art implicit feedback collaborative ranking models in two evaluation metrics.
关 键 词:Adversarial training Pairwise ranking Collaborative filtering Recommender system
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7