Low-Rank Combined Adaptive Sparsifying Transform for Blind Compressed Sensing Image Recovery  

在线阅读下载全文

作  者:HE Ning WANG Ruolin LYU Jiayi XUE Jian 

机构地区:[1]Beijing Union University,Beijing 100101,China [2]Logistics Department of Beijing Military Region,Beijing 100042,China [3]Capital Normal University,Beijing 100048,China [4]University of Chinese Academic of Sciences,Beijing 100049,China

出  处:《Chinese Journal of Electronics》2020年第4期678-685,共8页电子学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.61572077,No.61872042,No.61370138,No.61671426,No.61731022);the Project of Oriented Characteristic Disciplines(No.KYDE40201701);Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China(NSFC)and Chinese Academy of Sciences(CAS)(No.U1531242);the Beijing Natural Science Foundation(No.4182071);the Innovation Practice Training Program for College Students of Chinese Academy of Sciences。

摘  要:Compressed sensing(CS)exploits the sparsity of images or image patches in a transform domain or synthesis dictionary to reconstruct images from undegraded images.Because the synthesis dictionary learning methods involves NP-hard sparse coding and expensive learning steps,sparsifying transform based blind compressed sending(BCS)has been shown to be effective and efficient in applications,while also enjoying good convergence guarantees.By minimizing the rank of an overlapped patch group matrix to efficiently exploit the nonlocal self-similarity features of the image,while the sparsifying transform model imposes the local features of the image.We propose a combined low-rank and adaptive sparsifying transform(LRAST)BCS method to better represent natural images.We utilized the patch coordinate(PCD)descent algorithm to optimize the method,and this enforced the intrinsic local sparsity and nonlocal self-similarity of the images simultaneously in a unified framework.The experimental results indicated a promising performance,even in comparison to state-of-theart methods.

关 键 词:Low-rank Sparsifying transform Blind compressed sensing(BCS) Patch coordinate descent(PCD) Image recovery 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象