Engineering the electronic and strained interface for high activity of PdMcore@Ptmonolayer electrocatalysts for oxygen reduction reaction  被引量:9

合理调控电子和应力效应制备具有高氧还原活性的PdM@Pt核壳结构催化剂

在线阅读下载全文

作  者:Haoxiong Nan Ya-Qiong Su Cheng Tang Rui Cao Dong Li Jia Yu Quanbing Liu Yijie Deng Xinlong Tian 南皓雄;苏亚琼;唐城;曹睿;李栋;喻嘉;刘全兵;邓怡杰;田新龙(School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China;Laboratory of Inorganic Materials&Catalysis.Schuit Institute of Catalysis,Eindhoven University of Technology,5600 MB Eindhoven,The Netherlands;School of Chemical Engineering,The University of Adelaide,Adelaide,SA 5005,Australia;Stanford Synchrotron Radiation Lightsource,SLAC National Accelerator Laboratory,Menlo Park,CA 94025,USA;Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology,Department of Chemical Engineering,Tsinghua University,Beijing 100084,China;The Key Laboratory of Fuel Cell Technology of Guangdong Province,School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,China;Guangdong Engineering and Technology Research Center for Advanced Nanomaterials,School of Environment and Civil Engineering,Dongguan University of Technology,Dongguan 523808,China;State Key Laboratory of Marine Resource Utilization in South China Sea,School of Chemical Engineering and Technology,Hainan University,Haikou 570228,China)

机构地区:[1]School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China [2]Laboratory of Inorganic Materials&Catalysis.Schuit Institute of Catalysis,Eindhoven University of Technology,5600 MB Eindhoven,The Netherlands [3]School of Chemical Engineering,The University of Adelaide,Adelaide,SA 5005,Australia [4]Stanford Synchrotron Radiation Lightsource,SLAC National Accelerator Laboratory,Menlo Park,CA 94025,USA [5]Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology,Department of Chemical Engineering,Tsinghua University,Beijing 100084,China [6]The Key Laboratory of Fuel Cell Technology of Guangdong Province,School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,China [7]Guangdong Engineering and Technology Research Center for Advanced Nanomaterials,School of Environment and Civil Engineering,Dongguan University of Technology,Dongguan 523808,China [8]State Key Laboratory of Marine Resource Utilization in South China Sea,School of Chemical Engineering and Technology,Hainan University,Haikou 570228,China

出  处:《Science Bulletin》2020年第16期1396-1404,M0004,共10页科学通报(英文版)

基  金:the Natural Science Foundation of Hainan Province(2019RC007);the National Natural Science Foundation of China(21805104,21606050,21905056,21905045,and U1801257);the Natural Science Foundation of Guangdong Province(2018A0303130239,2018A0303130223);Pearl River Science and Technology New Star Project(201806010039);the Start-up Research Foundation of Hainan University(KYQD(ZR)1908);Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province。

摘  要:Alloyed nanoparticles with core-shell structures provide a favorable model to modulate interfacial interaction and surface structures at the atomic level,which is important for designing electrocatalysts with high activity and durability.Herein,core-shell structured Pd3M@Pt/C nanoparticles with binary PdM alloy cores(M=Fe,Ni,and Co)and a monolayer Pt shell were successfully synthesized with diverse interfaces.Among these,Pd3Fe@Pt/C exhibited the best oxygen reduction reaction catalytic performance,roughly 5.4 times more than that of the commercial Pt/C catalyst used as reference.The significantly enhanced activity is attributed to the combined effects of strain engineering,interfacial electron transfer,and improved Pt utilization.Density functional theory simulations and extended X-ray absorption fine structure analysis revealed that engineering the alloy core with moderate lattice mismatch and alloy composition(Pd3Fe)optimizes the surface oxygen adsorption energy,thereby rendering excellent electrocatalytic activity.Future researches may use this study as a guide on the construction of highly effective core-shell electrocatalysts for various energy conversions and other applications.核壳结构合金纳米粒子可在原子水平上对其界面相互作用和表面微结构进行调控,对设计具有高活性和耐久性的电催化剂具有重要意义.本文制备了一系列具有不同界面,以钯合金为内核、单原子铂层为壳的核壳结构催化剂,其中Pd3Fe@Pt1L催化剂展示出最优的氧还原活性和稳定性.理论计算和X射线吸收精细结构研究表明,以Pd3Fe为内核,可以实现对Pt壳层应力和电子效应的双重调控,从而优化其催化过程中含氧中间体的吸附强度,增强其催化性能.

关 键 词:Oxygen reduction reaction Fuel cells Diverse interfaces Pt monolayer Interface engineering 

分 类 号:TM911.4[电气工程—电力电子与电力传动] O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象