基于GWO-Elman神经网络的底板突水预测  被引量:21

Prediction of water inrush from floor based on GWO-Elman neural network

在线阅读下载全文

作  者:施龙青 张荣遨 徐东晶 李越 邱梅 高卫富 SHI Longqing;ZHANG Rongao;XU Dongjing;LI Yue;QIU Mei;GAO Weifu(College of Earth Sciences & Engineering,Shandong University of Science and Technology,Qingdao 266590,China;Department of Resource and Civil Engineering,Shandong University of Science and Technology,Taian 271000,China)

机构地区:[1]山东科技大学地球科学与工程学院,山东青岛266590 [2]山东科技大学资源与土木工程系,山东泰安271000

出  处:《煤炭学报》2020年第7期2455-2463,共9页Journal of China Coal Society

基  金:国家自然科学基金资助项目(41807283,51804184);中国煤炭工业协会2018年度科学技术研究指导性计划资助项目(MTKJ2018-263)。

摘  要:我国是世界最大的煤炭生产国和消费国,特别是在我国的华北地区,煤炭储量非常丰富,但由于华北地区的水文地质条件复杂,煤炭实际生产过程中事故频发,特别是煤层底板突水事故,一旦发生往往会造成较为严重的人员伤亡和财产损失。因此煤层底板突水预测已经成为煤矿安全生产领域研究的重点。山东巨野煤田红旗煤矿是典型的华北型煤田,其主要可采煤层3煤层平均厚度5.48 m,实际生产过程中受底板突水威胁严重,在矿井的建设及生产过程中多次出现底板突水。为了对3煤层进行底板突水预测,在分析收集红旗煤矿相关矿井水文地质资料的基础上,选取断裂分维值、取心率、隔水层厚度、单位涌水量、渗透系数、底板含水层总厚度、承压含水层水压共7个因素,作为进行底板突水预测的主要影响因素;以现场实际数据为输入样本,通过灰狼优化算法(Grey Wolf Optimizer,GWO)得到Elman神经网络优化的最佳权重和阈值,分别为18.7482和0.014435,之后建立相应的GWO-Elman神经网络底板突水预测模型;在此基础上通过测试样本输入模型验证,结果准确率达到100%,再用熵值法确定权重的脆弱性指数法进行对比,证明神经网络模型准确度更高,可以用于工程实际。最后,利用所建立的神经网络模型对2个未开采工作面进行了底板突水预测,将预测结果指导矿井实际安全生产。China is the world’s largest coal producer and consumer,especially in the North China region of China,where coal reserves are very rich.However,due to the complex hydrogeological conditions in North China,accidents occur frequently during the actual coal production,especially water inrush accidents in coal floor,which often result in serious casualties and coal losses.Therefore,the prediction of coal floor water inrush has become the focus of research in the field of coal mine safe production.Hongqi Coal Mine of Juye Coalfield is a typical North China coal field.Its main recoverable coal seam is No.3 coal seam,with an average thickness of 5.48 m.The coal seam is seriously threatened by floor water inrush in the actual production process,and some floor water inrush accidents have occurred many times during mine construction and production.In order to predict the water inrush from the bottom of the No.3 coal seam,based on the analysis and collection of relevant hydrogeological data of the Hongqi coal mine,seven factors are selected,including the fractal dimension of the fracture,the heart rate,the thickness of the water barrier,the amount of water inflow,the permeability coefficient,the total thickness of the aquifer of the floor,and the water pressure of the confined aquifer,these seven factors are used as the main influencing factors for the prediction of water inrush from the floor.Taking the actual field data as input samples,the best weights and thresholds of Elman neural network optimization are obtained by Grey Wolf Optimizer(GWO),which are 18.7482 and 0.014435,respectively.Then the corresponding GWO-Elman neural network prediction model for floor water inrush is established.On this basis,the test sample input model is verified,and the accuracy rate is 100%.The entropy method is used to determine the weight of the vulnerability index method for comparison.The neural network model is more accurate and can be used in engineering practice.Finally,the established neural network model is used to predict the wat

关 键 词:底板突水 灰狼优化算法 ELMAN神经网络 熵值法 华北型煤田 

分 类 号:TD745[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象