检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈林之 王少尉[1] SHEN Linzhi;WANG Shaowei(School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China)
机构地区:[1]南京大学电子科学与工程学院,江苏南京210023
出 处:《国防科技大学学报》2020年第4期18-23,共6页Journal of National University of Defense Technology
基 金:国家自然科学基金资助项目(61671233,61801208,61931023)。
摘 要:为保证新一代移动无线网络能够根据实时覆盖情况动态地调节小区天线参数,需要实现高效且准确的无线覆盖预测。传统的求解方法通过精确的场强预测判断天线参数的优劣,虽然精度很高但需要大量的计算资源,无法满足5G和后5G移动网络通过实时覆盖预测进行射频参数动态调整的实际需求。现采用基于深度神经网络的算法对给定天线参数的覆盖效果进行预测,以取代对目标区域的精确场强预测。数值结果表明:该方法能够在保持计算准确性的同时显著减少计算量,为5G动态网络规划提供基础性参考数据。In order to adjust the parameters of cell antennas dynamically according to the real-time coverage in the new generation mobile wireless network,it is necessary to predict the wireless coverage efficiently and accurately.The traditional solution method is to judge the antenna parameters by accurate field strength prediction in the target area.The method is accurate but wastes large amounts of computing resources,which cannot meet the actual needs of 5G and beyond 5G mobile networks to dynamically adjust the radio frequency parameters through real-time coverage prediction.Here the algorithm based on deep neural network was proposed to predict the coverage under given antenna parameters in order to replace the accurate field strength prediction of the target area.Numerical results show that the algorithm can keep the accuracy of the calculation while significantly reducing the computing resources,which provides basic reference data for 5G dynamic network planning.
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173