检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王辉[1] 李昌刚[1] Wang Hui;Li Changgang(School of Information and Intelligence,Zhejiang Wanli University,Ningbo 315000,Zhejiang,China)
机构地区:[1]浙江万里学院信息与智能学院,浙江宁波315000
出 处:《计算机应用与软件》2020年第8期85-90,共6页Computer Applications and Software
基 金:宁波市科技特派员团队项目(2018C80002-10)。
摘 要:为了提高单一预测模型在销售预测中的性能,提出一种在多机器学习模型融合下基于Stacking集成策略的销售预测方法。将数据划分为四个同分布的数据集;基于各数据集训练多个基学习器;以XGBoost算法为元学习器构建两层Stacking集成学习方法;使用德国Roseman超市在Kaggle平台上的销售数据对算法进行验证。实验结果表明:在Stacking模型中,元学习器利用各基学习器的算法优势提升了模型的预测性能,相比单个模型在测试集上的均方根百分误差,Stacking模型最高减少了23.5%,最低减少了1.8%。In order to improve the performance of single prediction model in sales forecasting,we propose a sales forecasting method based on Stacking integration strategy under the fusion of multi-machine learning model.The data was divided into four equally data sets with the same distribution;multiple base learners were trained based on each data set;the two-layer Stacking integrated learning method was constructed with XGBoost algorithm as the meta-learner;we verified the algorithm using the sales data from the German Roseman supermarket on the Kaggle platform.The experimental results show that in the Stacking model,the meta-learner improves the prediction performance of the model by taking advantage of the algorithm advantages of each base learner.The Stacking model reduces the error by 23.5%at the highest and 1.8%at the lowest,compared with the root mean square error of a single model on the test set.
关 键 词:机器学习 销售预测 Stacking集成学习 XGBoost
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3