检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王昌安 田金文[1] WANG Chang’an;TIAN Jinwen(College of Automation,National Key Laboratory of Multispectral Information Processing Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
机构地区:[1]华中科技大学多谱信息处理国家级重点实验室,武汉湖北430074
出 处:《智能系统学报》2020年第2期296-301,共6页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金项目(61273279)。
摘 要:针对近岸舰船目标细粒度识别的难题,提出了一种利用生成对抗网络辅助学习的任意方向细粒度舰船目标识别框架。通过训练能模仿舰船目标区域的抽象深度特征的生成网络引入生成样本,来辅助分类子网络学习样本空间的流形分布,从而增强细粒度的类别间判别能力。在细粒度类别的近岸舰船数据集上,引入生成对抗网络后的算法识别准确率得到较大提升,平均识别精度提升了2%。消融实验结果表明,利用生成样本辅助训练分类子网络可以有效地提升舰船目标的细粒度识别精度。To solve the fine-grained inshore ship recognition problem, a multidirectional fine-grained ship recognition framework, which is based on deep-learning generative adversarial networks, is proposed. By training the generation network that can simulate the abstract depth features of the ship target area, the generated samples are used to assist the classification subnetwork in learning the manifold distribution of the sample space. Thus, the fine-grained discriminating power of the classification subnetwork is enhanced. Ablation experiment was conducted on the multi-category finegrained inshore ship dataset, and the model assisted by generative adversarial networks achieved an average precision rate improvement of 2%. As shown in the comparative experiment, it is beneficial to train the classification subnetwork using the generated samples to solve the fine-grained inshore ship recognition problem.
关 键 词:遥感图像 近岸舰船 舰船目标检测 舰船识别 舰船细粒度分类 生成对抗网络 深度学习 图像处理
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15