检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾鹤鸣[1] 彭晓旭 邢致恺 李金夺 康立飞 JIA Heming;PENG Xiaoxu;XING Zhikai;LI Jinduo;KANG Lifei(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,China;Daqing Oil Field Co.Oil Production Plant Two,Daqing 163000,China)
机构地区:[1]东北林业大学机电工程学院,黑龙江哈尔滨150040 [2]大庆油田有限责任公司采油二厂,黑龙江大庆163000
出 处:《智能系统学报》2020年第2期367-373,共7页CAAI Transactions on Intelligent Systems
基 金:中央高校基本科研业务费专项资金项目(2572019BF04);国家自然科学基金项目(31470714,51609048);黑龙江省研究生教育创新工程项目(JGXM_HLJ_2016014)。
摘 要:针对传统Renyi熵方法在分割污油图像时存在图片差距大、无法根据不同图片进行最优分割的问题,提出改进萤火虫算法对二维Renyi熵分割算法中的α值进行寻优来解决上述问题。分析了采集的污油图片特点以及对污油图片进行分割的必要性;针对多目标寻优精度不高和后期收敛速度较慢的问题,对萤火虫算法进行了改进,并对初始萤火虫位置进行混沌优化处理,使结果达到全局最优;利用基于改进萤火虫算法的Renyi熵图像分割算法对采集的污油图片进行阈值分割实验,并与二维Renyi熵分割、粒子群算法(PSO)Renyi熵分割方法进行比较。实验结果表明:本文提出的算法可以有效地对污油区域进行分割,能够快速地实现复杂图像的精确处理。Aiming at the problem that the traditional Renyi entropy method has large image gaps and cannot be optimized according to different images when dividing dirty oil images,an improved firefly algorithm is proposed to solve the above problem by optimizing the alpha value of two-dimensional Renyi entropy segmentation algorithm.First,we analyze the characteristics of an acquired oil image and the necessity of segmenting a dirty oil picture;second,aiming at the problems of low optimization precision and slow convergence speed in the later stage,the firefly algorithm is improved to make the initial position of the firefly chaos optimization processing results reach the global optimum,and then Renyi entropy image segmentation algorithm based on the improvement of the firefly algorithm is applied to the experiments of threshold value segmentation of the waste oil image.Finally,the algorithm proposed in this paper is used to collect oil image segmentation in experiments,and the results are compared with the 2 D Renyi entropy segmentation and the particle swarm optimization(PSO)Renyi entropy segmentation method.The experimental results illustrate that the proposed algorithm can effectively segment the waste oil area and quickly achieve accurate processing of complex images.
关 键 词:污油图像处理 阈值分割 萤火虫算法 二维RENYI熵 混沌优化 多目标寻优 适应度学习 全局优化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254