改进的加权t-SNE算法及在故障诊断中的应用  被引量:4

Improved weighted t-SNE algorithm and application in fault diagnosis

在线阅读下载全文

作  者:夏丽莎[1] 方华京 Xia Lisha;Fang Huajing(School of Business,University of Shanghai for Science&Technology,Shanghai 200093,China;School of Automation,Huazhong University of Science&Technology,Wuhan 430074,China)

机构地区:[1]上海理工大学管理学院,上海200093 [2]华中科技大学自动化学院,武汉430074

出  处:《计算机应用研究》2020年第7期2078-2081,共4页Application Research of Computers

基  金:国家自然科学基金资助项目(61473127,71572113)。

摘  要:对随机邻域嵌入算法(SNE)中的距离进行改进,提出一种基于Manhattan距离的加权t-SNE(Mwt-SNE)算法。使用受空间维数影响较小的Manhattan距离作为度量方式,使用K-均值聚类算法将高维空间数据样本点距离分为三类,基于表格法进行权重参数寻优与加权,以加权相对Manhattan距离代替欧氏绝对距离计算相似度条件概率,从而增大数据对象之间的区分度,提升降维效果,增强分类显著性。提出基于Mwt-SNE算法的在线故障诊断模型,使用核密度估计(KDE)确定控制限并进行在线监控。TE化工过程实验表明,Mwt-SNE算法能有效降低误报率和漏报率,从而提高故障诊断稳定性和准确性。This paper proposed a novel Manhattan distance based weighted t-SNE(Mwt-SNE)algorithm on the basis of improved distance in stochastic neighbor embedding(SNE).Firstly,it calculated samples Manhattan distances rather than Euclidean distance from high dimensional space for their less affections of dimension.Next,it divided these Manhattan distances into three groups with K-means clustering algorithm and implemented weighting processing separately with tabular parameter optimization method.Then it calculated similarity conditional probabilities with weighted Manhattan distances according to values category distribution.The aim of weighted Manhattan distances was to enlarge the data distinction,promote dimension reduction and enhance classification significance.Finally,it established an Mwt-SNE algorithm based on-line fault diagnosis model and the corresponding control limit with KDE.The experimental results on TE chemical process show that the proposed Mwt-SNE algorithm reduces FAR(false alarm rate)and MAR(missing alarm rate)as well as improves stability and accuracy.

关 键 词:故障诊断 加权t-SNE Manhattan距离 核密度估计 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象