检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:保文星[1] 桑斯尔 沈象飞 BAO Wen-xing;SANG Si-er;SHEN Xiang-fei(School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China)
机构地区:[1]北方民族大学计算机科学与工程学院,宁夏银川750021
出 处:《光学精密工程》2020年第8期1810-1819,共10页Optics and Precision Engineering
基 金:宁夏自然科学基金资助项目(No.2020AAC02028);国家自然科学基金资助项目(No.61461003);国家民委图像与智能信息处理创新团队支持计划资助项目。
摘 要:针对KAZE算法在遥感图像配准过程中存在的检测速度慢和误匹配的问题,本文提出了一种改进的基于信息熵约束和KAZE特征提取的预处理算法。首先采用非重叠滑动窗口遍历遥感图像并分割窗口,计算分割后窗口区域的信息熵。然后,根据获取的信息熵形成的直方图,选取适当阈值来保留具有高信息熵的图像局部区域用于KAZE算法特征提取。最后,采用RANSAC算法去除误匹配以优化匹配结果。在SPOT、高分二号等卫星数据上的实验结果表明,本文算法相比于KAZE算法的特征点匹配精度分别提升了0.2%和0.3%,算法运行时间分别降低了70%和53%。The KAZE algorithm typically extracts feature points of low accuracy and mismatches in remote sensing images.Thus,this paper proposed a preprocessing algorithm to accelerate KAZE feature extraction.The proposed algorithm preprocessed the remote sensing image based on entropy constrained and KAZE feature extraction.The method first used a non-overlapping sliding window to traverse the remote sensing image and segmented the window area,and the entropy of the segmented window area was sequentially calculated.According to the histogram formed by the obtained entropy,an appropriate threshold was then selected to retain the local area of the image with high entropy for the KAZE algorithm feature extraction.Finally,the RANSAC algorithm was used to remove mismatches to optimize matching results.Experiments on the SPOT,GH-2 satellite data indicate that compared with the KAZE algorithm alone,the accuracy of the KAZE algorithm coupled with the proposed algorithm is improved by 0.2%,0.3%,and the performance time of the algorithm is reduced by 70%,53%,respectively.
关 键 词:遥感图像配准 信息熵 滑动窗口 KAZE算法 随机抽样一致
分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.140.58