机构地区:[1]Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film,Ministry of Agriculture and Rural Affairs,Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences,Beijing 100081,China [2]College of Water Resources and Civil Engineering,China Agricultural University,Beijing 100083,China [3]Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China [4]Ningxia Academy of Agriculture and Forestry Sciences,Crops Research Institute,Yongning 750105,Ningxia,China
出 处:《The Crop Journal》2020年第4期548-564,共17页作物学报(英文版)
基 金:supported by the National Key Research and Development Program of China(2016YFD0300102);supported by the Innovation Program of the Chinese Academy of Agricultural Sciences and the Elite Youth Program of the Chinese Academy of Agricultural Sciences。
摘 要:In rainfed areas of northwestern China,maize production is constrained mainly by low temperature during early growth and water limitation during the entire growth period.Plastic film mulching is commonly used to increase maize yield in this area,because it increases topsoil temperature and moisture content as well as water use efficiency.However,the physiological and anatomical bases of maize yield improvement with plastic film mulching are not well understood.The effects of plastic film mulching and planting density on maize yield,photosynthetic characteristics,respiration,leaf anatomy,and root growth were studied in a two-year field experiment conducted on the Loess Plateau of China in 2017 and 2018.The experiment used a split-split plot design with two mulching treatments(plastic film mulching and no mulching),two planting densities(7.5×104 and10.5×104 plants ha-1),and two maize cultivars,Zhengdan 958 and Xianyu 335.Compared with no mulching,plastic film mulching increased maize yields by 31.1%–46.4%in 2017 and3.6%–34.7%in 2018.Compared with low planting density,high planting density significantly increased and slightly reduced yields of both cultivars in the dry year 2017 and the rainy year 2018,respectively.Plastic film mulching increased photosynthesis and respiration as well as leaf stomatal density and aperture.Photosynthetic rate,dark respiration,and stomatal conductance and aperture were lower at high planting than at low planting density.Maize yield was positively correlated with photosynthesis,dark respiration,and stomatal aperture.Mulching increased root dry weight and length in the 0–20 cm soil layer and root activity at maturity.Overall,the changes in root growth and leaf anatomy resulted in increased photosynthesis and dark respiration,and the increased photosynthesis contributed to the increase in grain yield and biomass production under plastic film mulching conditions.Our results increase understanding of the physiological mechanisms by which plastic film mulching increases maize yield
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...