基于检测无迹信息融合算法的多传感融合方法  被引量:5

Multi-Sensor Fusion Method Based on Checking Unscented Information Fusion Algorithm

在线阅读下载全文

作  者:刘志强[1] 张光林 郑曰文 贺晓宇 Liu Zhiqiang;Zhang Guanglin;Zheng Yuewen;He Xiaoyu(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013)

机构地区:[1]江苏大学汽车与交通工程学院,镇江212013

出  处:《汽车工程》2020年第7期854-859,共6页Automotive Engineering

基  金:江苏省研究生实践创新计划项目(SJCX19_1168)资助。

摘  要:针对单一传感器对目标车辆识别准确率低的问题,提出一种基于毫米波雷达和摄像头信息融合的目标跟踪方法,同时,基于扩展信息融合(EIF)和无迹信息融合(UIF)原理建立了检测无迹信息融合(CUIF)算法,对多传感器信息进行融合。CUIF算法采用分布式融合结构,将来自不同传感器的轨迹相互关联并融合以获得目标轨迹,并利用分布式检测系统对获取的传感器延迟信息进行实时系统状态补偿,从而解决了单传感器信号延迟、丢包等问题。通过CarSim与Simulink联合搭建仿真和试验平台对所研究的融合模型进行算法验证。试验结果表明,CUIF算法的目标丢失率比EIF和UIF减少了10%以上,它将时间延迟缩短至5 ms,满足系统对实时性的要求。For the problem of low recognition accuracy for the target vehicle of single sensor,this paper proposes a target tracking method based on millimeter-wave radar and camera information fusion.Meanwhile,based on extended information fusion(EIF)and unscented information fusion(UIF),checking unscented information fusion(CUIF)algorithm is established to fuse multi-sensor information.The CUIF algorithm uses a distributed fusion structure to correlate and fuse the trajectories from different sensors to obtain the target trajectory,and applies the distributed detection system to perform real-time system state compensation on the acquired sensor delay information,thus solving the problems of single sensor signal delay and packet loss.CarSim and Simulink are used jointly to build a simulation and test platform to validate the algorithm of the established fusion model.The experimental results show that CUIF algorithm reduces the target loss rate by more than 10%compared with EIF and UIF,and reduces the time delay to 5 ms,which meets the real-time requirements of the system.

关 键 词:信息融合 检测无迹信息融合算法 分布式融合结构 分布式检测系统 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象