检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪淼 李胜利[1] 高闯 范越 WANG Miao;LI Sheng-li;GAO Chuang;FAN Yue(School of Materials and Metallurgy,University of Science and Technology Liaoning,Anshan 114051,Liaoning,China)
机构地区:[1]辽宁科技大学材料与冶金学院,辽宁鞍山114051
出 处:《钢铁》2020年第7期53-57,共5页Iron and Steel
基 金:“十三五”国家重点研发计划资助项目(2017YFB0304201);国家自然科学基金资助项目(51974155);辽宁省教育厅创新团队资助项目(LT2016003)。
摘 要:转炉炼钢是一个复杂的高温物理化学反应过程。在冶炼过程中不能连续检测钢的成分。所以,准确地预报终点的碳质量分数和温度对于提高终点命中率是非常有意义的。基于广西某钢厂80t转炉炼钢实际生产数据,建立了终点碳质量分数和终点温度的孪生支持向量回归机(TSVR)预测模型,对100个炉次的实际生产数据进行了模型的训练,另外30个炉次的数据用于验证模型的精度。结果表明,预测误差Δω([C])≤0.01%的命中率为93.3%,Δt≤15℃的命中率为96.7%,双命中率为90%。与BP神经网络模型相比,TSVR模型的终点碳质量分数和终点温度命中率均比BP神经网络模型高。Basic oxygen furnace(BOF)steelmaking is a complex process with high-temperature physicochemical reactions.The composition of steel cannot be detected continuously during smelting,accurately predicting the carbon mass percent and temperature of the end-point is very meaningful to improve the end-point hit rate.The actual production samples of 80 tBOF were collected from one steel plant in Guangxi province.A twin support vector regression(TSVR)prediction model was established to realize the prediction of end-point temperature and carbon mass percent.The training process was carried out by using actual production samples of 100 heats,and the other 30 heats were adopted to verify the accuracy of the prediction model.The results show that the hit rate of the model withΔw([C])≤0.01%is 93.3%and the hit rate of the model withΔt≤15℃is 96.7%.In addition,the double hit rate of the model is 90%.By comparing with the BP neural network model,the end-point carbon content and the end-point temperature hit rate of this model are higher than those of the BP neural network model.
分 类 号:TF713[冶金工程—钢铁冶金] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.55.253