拱顶罐内油品蒸发损耗的数值模拟和实验研究  被引量:6

Numerical Simulation and Experiment Study of Oil Evaporation Loss in Dome-roof Tanks

在线阅读下载全文

作  者:张佩宇 黄维秋 景海波 汪城 孙宪航 ZHANG Peiyu;HUANG Weiqiu;JING Haibo;WANG Cheng;SUN Xianhang(School of Petroleum Engineering,Changzhou University,Changzhou 213164,China;Hefei Gas Group Co.,Ltd.,Hefei 230075,China)

机构地区:[1]常州大学石油工程学院,江苏常州213164 [2]合肥燃气集团有限公司,安徽合肥230075

出  处:《安全与环境工程》2020年第4期143-151,共9页Safety and Environmental Engineering

基  金:国家自然科学基金项目(51574044);江苏省重点研发计划(产业前瞻与共性关键技术)项目(BE2018065);江苏省研究生实践创新计划项目(SJCX17_0721)。

摘  要:集成油气收集回收系统的拱顶罐作为汽油等高挥发性油品的储存设施日益受到重视,但对拱顶罐气体空间传热传质机理尚不清楚,需做进一步研究。建立了拱顶罐的非稳态传热传质理论模型,自编Matlab程序并通过自行搭建实验平台验证其可行性,以江苏省常州地区某液位为2875 mm的1000 m^3拱顶汽油罐为研究对象,对该拱顶罐在春分日6∶00~18∶00时间段储罐内油品的蒸发损耗过程进行了数值模拟,分析了储罐内温度、传热系数、液相蒸发量的变化规律,并估算了储罐的小呼吸损耗量。结果表明:储罐内气相、罐顶、气体空间罐壁和液体空间罐壁温度的变化趋势与大气环境温度的变化趋势一致,最大值均出现于14∶00,罐内气相温度居于储罐边界(罐顶和气体空间罐壁)温度与大气环境温度之间;储罐内液相与罐壁间的自然对流换热系数较大且变化幅度也很大,变化范围为31.05~73.05 W/(m^2·K);储罐内气相与罐壁和罐顶间的自然对流换热系数较小且变化幅度也很小,变化范围分别为1.64~2.10 W/(m^2·K)和1.40~1.61 W/(m^2·K);液体空间罐壁的总传热系数最大,气体空间罐壁次之,罐顶最小,三者的变化范围依次为8.57~10.18 W/(m^2·K)、1.45~1.80 W/(m^2·K)、1.16~1.31 W/(m^2·K);在储罐内油气浓度为0的初始条件下,自6∶00至18∶00,罐内液相蒸发量为421.13 kg,气体体积膨胀量为214.06 m^3。研究结果对于拱顶罐油品蒸发损耗的评估及其油气收集回收系统的设计、管理具有重要参考价值。Dome-roof tanks integrated with vapor collection and recovery system,as the storage facility for high volatile oils such as gasoline,have been paid increasing attention to.However,the mechanism of heat and mass transfer in a doom-tank is still unknown,which needs further study.This paper establishes the theoretical model of unsteady heat and mass transfer in a dome-roof tank,and verifies the feasibility of the model by self-complied Matlab program and by experiments on self-built experimental platform.Moreover,taking a 1000 m^3 dome-roof gasoline tank with 2875 mm liquid level in Changzhou of Jiangsu Province as the research object,the paper conducts numerical simulation of oil evaporation loss,and analyzes the variation of temperature,heat transfer coefficient and liquid evaporation in the dome-roof tank during 6∶00~18∶00 on the Spring Equinox,and estimates the breathing loss of storage tank.The results show that the change of temperature of gas phase,tank top,gas space tank wall and liquid space tank wall of the 1000 m^3 storage tank are consistent with the variation trend of atmospheric environment temperature,with the maximum values appearing at 14∶00 p.m.,and the gas phase temperature in the tank is between that of the tank boundary(tank top and gas space tank wall)and of the atmospheric environment.The natural convection heat transfer coefficient between the liquid phase in the tank and tank wall is larger and varies greatly,ranging from 31.05 to 73.05 W/(m^2·K),while the natural convection heat transfer coefficient between gas phase in the tank and tank wall,and between gas phase in the tank and tank top is smaller and varies little,ranging from 1.64 to 2.10 W/(m^2·K)and 1.40 to 1.61 W/(m^2·K),respectively.The total heat transfer coefficient is arranged from large to small as follows:liquid space tank wall,gas space tank wall,tank top.The variation ranges are 8.57~10.18 W/(m^2·K),1.45~1.80 W/(m^2·K),and 1.16~1.31 W/(m^2·K).When the oil vapor concentration in a dome-roof tank is zero at the init

关 键 词:拱顶罐 油品 蒸发损耗 传热传质模型 数值模拟 实验 

分 类 号:X784[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象