检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王淼 蔡晓霞 雷迎科 WANG Miao;CAI Xiaoxia;LEI Yingke(Department of Command and Countermeasures,College of Electronic Countermeasures,National University of Defense Technology,Hefei 230037,China)
机构地区:[1]国防科技大学电子对抗学院指挥对抗系,合肥230037
出 处:《计算机工程》2020年第8期172-177,183,共7页Computer Engineering
基 金:国防科技大学科研项目(KY15N618)。
摘 要:变速跳频信号高跳速和跳速多变的特性使源信号分离难度加大,采用传统基于稀疏分量分析的欠定盲源分离算法无法得到高精度恢复信号。针对该问题,提出一种改进的欠定变速跳频信号盲分离算法。根据变速跳频信号时频域稀疏性不强的特点,通过自适应确定噪声阈值和分解特征值改进时频单源点检测算法,以提高混合矩阵估计精度,同时将聚类与稀疏重构思想应用到源信号分离中,得到稀疏性良好的信号。实验结果表明,该算法可使恢复信号与源信号的相似度达到90%,混合矩阵估计精度较传统单源点检测算法得到有效提高。The characteristics of high hop rate and variable hop speed of Variable Speed Frequency Hopping(VSFH)signals make the separation of source signals more difficult.Existing underdetermined blind source separation algorithms based on Sparse Component Analysis(SCA)cannot obtain high-precision recovered signals.To solve this problem,this paper proposes an improved blind source separation algorithm for underdetermined VSFH signals.According to the weak sparsity of VSFH signals in the time frequency domain,the noise threshold is adaptively determined,and the time frequency single source point detection algorithm is improved by the noise threshold and decomposition eigenvalue to increase the estimation accuracy of the hybrid matrix.At the same time,the idea of clustering and sparse reconstruction is applied to source signal separation in order to get the signals with good sparsity.Experimental results show that the proposed algorithm can achieve 90%similarity between the recovered signal and the source signal,and the estimation accuracy of the obtained hybrid matrix is improved effectively compared with those of the traditional single source point detection algorithm.
关 键 词:欠定盲分离 变速跳频信号 时频检测 稀疏分量分析 稀疏重构
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.213.117