改进SVM结合决策树的情感语音识别  被引量:3

Speech emotion recognition using decision tree and improved SVM

在线阅读下载全文

作  者:赵康[1] ZHAO Kang(Shangqiu Vocational and Technical College,Shangqiu 476100,Henan Province,China)

机构地区:[1]商丘职业技术学院,河南商丘476100

出  处:《信息技术》2020年第8期17-22,共6页Information Technology

基  金:河南省高等学校重点科研项目(15A520118);河南省科技厅软科学研究计划项目(142400411213)。

摘  要:针对传统情感语音识别方法整体分类精度不高的问题,提出改进SVM结合决策树的情感语音识别方法。首先,提取能量、过零率、幅度以及线性预测系数共四个时域统计特征,基于互相关技术将中性情感语音作为参考,与其余的情感语音相关联。其次,从每个得到的互相关序列中提取出质心等五个特征。最后,利用提出的改进SVM与决策树的混合模型完成分类识别。在柏林情感语音数据库上的结果表明,提出的方法能有效完成情感语音信号识别。Aiming at the problem that the overall classification accuracy of traditional emotional speech recognition methods is not high,an emotional speech recognition method is proposed based on improved SVM classifier and decision tree.Firstly,four time-domain statistical features including energy,zero-crossing rate,amplitude and linear prediction coefficients are extracted,and the neutral emotion speech are further used as a reference based on the cross-correlation technique,and is associated with the rest of the emotional speech.Then,five features such as the centroid are extracted from each of the obtained cross-correlation sequences.There is a contradiction in logic when this paragraph is reorganized.Finally,classification recognition is performed based on the proposed hybrid model of SVM classifier and decision tree.The classification accuracy of the classifier is tested by the Berlin emotional speech database.The results show that the proposed method can effectively complete the emotional speech signal recognition.

关 键 词:情感语音识别 改进SVM分类器 决策树 卷积运算 互相关 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象