检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱静 邓艾东[1,2] 邓敏强 程强[1,2] 刘洋 Zhu Jing;Deng Aidong;Deng Minqiang;Cheng Qiang;Liu Yang(School of Energy and Environment, Southeast University, Nanjing 210096, China;National Engineering Research Center of Turbo-Generator Vibration,Southeast University,Nanjing 210096,China)
机构地区:[1]东南大学能源与环境学院,南京210096 [2]东南大学火电机组振动国家工程研究中心,南京210096
出 处:《东南大学学报(自然科学版)》2020年第4期698-704,共7页Journal of Southeast University:Natural Science Edition
基 金:国家自然科学基金资助项目(51875100);中央高校基本科研业务费专项资金资助项目(2242020k30031)。
摘 要:为解决变分模态分解(VMD)在行星齿轮箱故障特征频率提取过程出现的鲁棒性低及分解个数不确定的问题,提出一种基于最小熵反褶积(MED)和自适应变分模态分解(AVMD)的齿轮箱故障诊断方法.首先通过MED对信号进行降噪,突出故障信号特征;采用瞬时频率的新定义及变差概念,自适应选择VMD的级数;使用VMD方法将行星齿轮箱的断齿故障信号分解为若干个本征模态函数(IMF)分量;根据相关系数分析选取带有故障信号的IMF分量,对其进行包络谱分析,以提取故障特征频率.仿真信号和试验信号分析结果表明,使用MED去噪后信号的峰值信噪比提高了10%,解决了传统VMD个数经验选择出现的误差问题,从而实现此过程自适应化,解决了VMD在强噪声下针对非线性非平稳信号鲁棒性低的问题,准确提取了风电齿轮箱的故障特征频率.To solve the problem of low robustness and uncertain decomposition number of variational mode decomposition(VMD)in the fault feature frequency extraction process of planetary gearbox,a gearbox fault diagnosis method based on minimum entropy deconvolution(MED)and adaptive variational mode decomposition(AVMD)was proposed.First,the signal was denoised by the MED to highlight the fault signal characteristics.By using the new definition of the instantaneous frequency and the concept of variation,the series of VMD was adaptively selected.The VMD method was used to decompose the fault signal of the planet gearbox into several intrinsic modal function(IMF)components.According to the analysis of correlation coefficient,the component of IMF with the fault signal was selected to envelope spectrum analysis to extract the fault characteristic frequency.The analysis results of the simulation signal and the experimental signal show that the peak signal-to-noise ratio of the signal is increased by 10%after denoising by using the MED,the error problems of the empirical selection of the number of VMD are solved and the process is self-adaptive.The problem of the low robustness of nonlinear non-stationary signals in the case of the strong noise is solved.The fault characteristic frequency of the wind power gearbox is accurately extracted.
关 键 词:行星齿轮箱 最小熵反褶积 变分模态分解 故障诊断
分 类 号:TK83[动力工程及工程热物理—流体机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249