In situ decoration of nanosized metal oxide on highly conductive MXene nanosheets as efficient catalyst for Li-O2 battery  被引量:5

在线阅读下载全文

作  者:Xingyu Li Caiying Wen Huifeng Li Genban Sun 

机构地区:[1]Beijing Key Laboratory of Energy Conversion and Storage Materials,College of Chemistry,Beijing Normal University,Beijing 100875,China

出  处:《Journal of Energy Chemistry》2020年第8期272-280,I0010,共10页能源化学(英文版)

基  金:supported by the National Natural Science Foundations of China (Grants:21871028,21771024)。

摘  要:Combining nanomaterials with complementary properties in a well-designed structure is an effective tactic to exploit multifunctional, high-performance materials for the energy conversion and storage. Nonprecious metal catalysts, such as cobalt oxide, with superior activity and excellent stability to other catalysts are widely desired. Nevertheless, the performance of CoO nanoparticles as an electrode material were significantly limit for its inferior conductivity, dissolution, and high cohesion. Herein, we grow ultrafine cobalt monoxide to decorate the interlayer and surface of the Ti3C2 Txnanosheets via a hydrothermal method companied by calcination. The layered MXenes act as the underlying conductive substrate,which not only increase the electron transfer rate at the interface but also greatly improve the electrochemical properties of the nanosized Co O particles by restricting the aggregation of CoO. The resulting CoO/Ti3C2 Txnanomaterial is applied as oxygen electrode for lithium-oxygen battery and achieves more than 160 cycles and first cycle capacity of 16,220 mAh g-1 at 100 mA g-1. This work paves a promising avenue for constructing a bi-functional catalyst by coupling the active component of a transition metal oxide(TMO) with the MXene materials in lithium-oxygen battery.

关 键 词:MXene Nanosized CoO Li-O2 batteries Cathode catalyst 

分 类 号:O643.36[理学—物理化学] TM911.41[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象