一种考虑成像特性的摄像机线性标定方法  被引量:4

A linear camera calibration method considering camera imaging characteristics

在线阅读下载全文

作  者:张磊[1,2] 汤小伟 李红兵 戴丽娟 姚阳[1] ZHANG Lei;TANG Xiaowei;LI Hongbing;DAI Lijuan;YAO Yang(School of Mechanical Engineering,Nantong University,Nantong 226019,China;Lassonde School of Engineering,York University,Toronto M3J 1P3,Canada;Department of Instrument Science and Engineering,Shanghai JiaoTong University,Shanghai 200240,China;Department of Psychology,University of Texas at Arlington,Arlington 76019,USA)

机构地区:[1]南通大学机械工程学院,江苏南通226019 [2]约克大学拉松德学院,加拿大多伦多M3J 1P3 [3]上海交通大学仪器科学与工程系,上海200240 [4]德州大学阿灵顿分校心理系,美国德克萨斯州阿灵顿76019

出  处:《中南大学学报(自然科学版)》2020年第7期1832-1841,共10页Journal of Central South University:Science and Technology

基  金:国家自然科学基金资助项目(51505280);上海市自然科学基金资助项目(18ZR1421300);江苏省政府留学奖学金资助项目(2017,2018)。

摘  要:针对经典Faugeras线性标定方法求解时只当成一般数学问题,未利用相机特性,造成对有关参数约束过少而标定精度低的问题,提出一种利用相机成像特性的摄像机线性标定方法。该方法把图像中心作为主点位置,将与图像横、纵坐标相关的参数先分开求解一部分,再将剩余参数混合求解。研究结果表明:提出的线性标定法的精度相比于经典Faugeras线性标定方法有了很大提升,参数更为合理,因此,该方法可直接应用于标定要求不太高的场合;本文方法简单实时性高,可应用于需要实时估计标定参数的在线视频场合。The classical Faugeras linear calibration method has few constraints in solution process. A new camera linear calibration method considering camera imaging characteristics was proposed. In the new method, the center of the image was taken as the center point of the optical axis;some parameters related to horizontal and vertical coordinates were solved separately;the rest parameters were solved by hybrid computation. The results show that compared with the classical Faugeras method, the proposed linear calibration method has much better accuracy and parameters are calibrated more reasonably. Therefore, it can be directly used in low demand cases. Owing to its simpleness and real-time performance, it can also be used in online calibration situation conveniently.

关 键 词:摄像机标定 线性标定 在线标定 离线标定 

分 类 号:TB811[一般工业技术—摄影技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象