基于BBO-SVM的大坝变形预测模型与性能验证  被引量:14

BBO-SVM-based dam deformation prediction model and its performance verification

在线阅读下载全文

作  者:刘志[1] 刘泽 杨金辉 高培培 朱光华[3] 胡少华[1,4] LIU Zhi;LIU Ze;YANG Jinhui;GAO Peipei;ZHU Guanghua;HU Shaohua(School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, Hubei, China;Nanjing Hydraulic Research Institute, Nanjing 210024, Jiangsu, China;Fujian Provincial Water Conservancy and Hydropower Survey and Design Institute, Fuzhou 350001, Fujian, China;National Dam Safety Research Center, Wuhan 430010, Hubei, China)

机构地区:[1]武汉理工大学安全科学与应急管理学院,湖北武汉430070 [2]南京水利科学研究院,江苏南京210024 [3]福建省水利水电勘测设计研究院,福建福州350001 [4]国家大坝安全工程技术研究中心,湖北武汉430010

出  处:《水利水电技术》2020年第8期62-68,共7页Water Resources and Hydropower Engineering

基  金:国家自然科学基金青年基金项目(51609184);国家大坝安全工程技术研究中心开放基金(CX2019B014)。

摘  要:针对大坝监测数据小样本、高维度和非线性的特点,引入支持向量机(SVM)机器学习方法,采用生物地理学优化算法(BBO)优化其惩罚因子c和核函数参数g,建立了基于BBO-SVM的大坝变形预测模型。结合2011—2016年水口大坝4个测点共900组环境量与效应量监测数据,对模型预测性能进行了验证,并将预测结果与SVM、PSO-SVM和ABC-SVM大坝变形预测模型进行对比。结果表明:文中提出的BBO-SVM模型不仅预测精度高,且稳定性更好,4个测点的均方根误差分别达到了0.3320、0.4735、0.4057、0.2228,拟合优度分别达到了0.9104、0.9610、0.9624、0.9569。本研究可提高大坝安全监测成果利用,对于大坝健康状态预测评估具有一定的工程指导意义。Aiming at the characteristics of small sample,high dimensionality and non-linearity of dam monitoring data,a support vector machine(SVM)learning method is introduced and its penalty factor c and kernel function parameter g are optimized with a biogeographic-based optimization(BBO)algorithm,and then a BBO-SVM-based dam deformation prediction model is established.In combination with 900 sets of the monitoring data of both the environment factors and the effect factors from four gauging points of Shuikou Dam from 2011 to 2016,the performance of the model is verified,from which the prediction results are compared with those from SVM,PSO-SVM and ABC-SVM dam deformation prediction models.The study result shows that the BBO-SVM-based model does not only has a high precision,but also has a better stability,for which the root mean square errors at the four gauging points reach 0.3320,0.4735,0.4057 and 0.2228 with the fitting goodnesses of 0.9198,0.9610,0.9624 and 0.9569 respectively.The study can improve the utilization of dam safety monitoring results and has a certain engineering referential value for the prediction and assessment on the healthy status of dam.

关 键 词:大坝变形 预测模型 BBO-SVM 预测性能 

分 类 号:TV698[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象